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Adversarial Example
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Deep Neural Networks are vulnerable to adversarial attacks.



Statistical Challenges
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(Schmidt et al. NeurlPS'18) The generalization gap in Adv-Robust
Classification is significantly larger than Standard Classification.



Conditional Gaussian Model

(Mixture of two gaussians picture here)

Binary Classification with Conditional Gaussian Model P, 5

1
ply=1)=ply=-1) =2,
x|y =41~ N(+u, X),
xly =-=1~ N(—p,X).

Minimize Robust Classification Error:
Rrobust(f) = PF[HHX/ - XHB £ 6; f(X/) 7é .y]

where || - || g is a norm, e.g. £, norm.



Sample Complexity

" Adversarially Robust Generalization Requires More Data":
Theorem ((Schmidt et al. NeurlPS’18))
When = = 021, ||ull2 = Vd, o < 25d"/*,

adversarial perturbation ||x" — x||o0 < %.

e O(1) samples sufficient for 99% standard accuracy.

o Q(V/d) samples necessary for 51% robust accuracy.

e Why do we need more data?

e What happens in other regimes?



Contributions

e Understanding the sample complexity through the lens of
Statistical Minimax Theory.

e Introducing " Adversarial Signal-to-Noise Ratio”, which explains
why robust classification requires more data.

e Near-optimal upper and lower bounds on minimax risk.
e ** Computationally efficient minimax-optimal estimator.

e ** Minimal assumptions.



Minimax Theory

Our goal is to characterize the Statistical Minimax Error of robust
Gaussian classification:

~

m?in PT;éD[Rrobust( ) - R;kobust]

where:

e D is a class of distributions.
e f is any estimator based on n i.i.d samples {x;,y;}7_; ~ P.x.

° is the smallest classification error of any classifier.

*
robust



Fisher’'s LDA: Bayes Risk

When € = 0, the problem reduces to Fisher’s LDA.

The smallest possible classification error R* is CTD(%SNR), where:

e SNR is the Signal-to-Noise Ratio of the model:
SNR(P,x) =2Vp"EX 1.
e ® : Gaussian tail probability ®(c) = Prxn(,1)[X > c].

SNR characterizes the hardness of classification problem.



Minimax Rate of Fisher LDA

Consider the family of distributions with a fixed SNR:

Dsia(r) :== {P.x|SNR(P,x) = r}.

The following minimax rate is proved by prior works:

Theorem (Li et al. AISTATS’17)

min  max [R(r/‘\) - R]>Q (e_(sls+°(1))f2 ; d) .
? PEDstd(r) n

with a nearly-matching upper bound.



Signal-to-Noise Ratio

Signal-to-Noise Ratio exactly characterizes the hardness of standard
Gaussian classification problem.

Can we find a similar quantity for the robust setting?

e SNR is not the correct answer!

e Two distributions with same SNR can have very different
optimal robust classification error (e.g. 0.1% vs 50%)!



Adversarial Signal-to-Noise Ratio

We define Adversarial Signal-to-Noise Ratio(AdvSNR) as:

AdvSNR(P,5) = min SNR(P,_.x).

lzllz<e

Using AdvSNR, we can re-formulate one of the main theorems in
(Bhagoji et al. ,NeurIPS 2019) as:

. = il
robust — ¢(§AdVSNR)

which recovers the results in Fisher LDA when £ = 0!
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Main Result

Consider the family of distributions with a fixed AdvSNR:
Drobust(r) = {PH7Z|AdVSNR(PM’Z) = r}.

Our Main Theorem:
Theorem (Dan, Wei, Ravikumar, ICML’20)

min  max [Rrobust(A) — R el > Q <e(é+0(1))r2 . d) )

1? PeDrobust(r) n

and there is a computationally efficient estimator which achieves
this minimax rate!

Generalization of (Li et al. 2017) in adversarially robust setting!
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Why does Adv-Robust Classification Require More Data?

The minimax rates for Standard vs. Adv-Robust classification:

exp{—%SNAﬂ}% vs. exp{—%AdVSNAﬂ}%

e AdvSNR < SNR, so Adv-Robust Risk always converges slower.

e Sometimes AdvSNR = ©(1) and SNR = O(1), the
convergence is only a constant factor slower.

e Sometimes AdvSNR = ©(1) and SNR = ©(d), the
convergence is exp(€2(d)) times slower!

12



Upper Bound & Algorithm

e (Bhagoji et al. ,NeurlPS 2019) showed that a linear classifier
f(x) = sign(wy x) has the minimal robust classification error,
where

Wwo = Z_l(u - 20)7
20 = argmin(p — z) X (u — 2).

llzlls<e

~

e Replace (p, X) by their empirical counterpart (i1, X).

e Now you have an efficient algorithm that achieves the minimax
rate!
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e Main idea: Black-Box Reduction

e Robust Classification is "harder” than Standard Classification.
e For any distribution P with Signal-to-Noise Ratio r,
e We can find a P/ with AdvSNR r, such that for any classifier f,

RobustExcessRiskp: (f) > StdExcessRiskp(f)
e Take mingf maxpcp,, (r),

MinimaxRobustExcessRisk(D,opyst (1))
> MinimaxStdExcessRisk(Ds4(r)).

e Apply (Li et al. 2017) and we get the minimax lower bound.
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e In this paper, we provide the first statistical minimax optimality

result for Adversarially Robust Classification.

e We introduced AdvSNR, which characterizes the hardness of
Adv-Robust Gaussian Classification.

e We proved matching upper and lower bounds for minimax
excess risk, and an efficient, minimax-optimal algorithm.

e Adversarially Robust Classification requires More Data, because

adversarial perturbation decreases the Signal-to-Noise Ratio!
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