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Adversarial Example

Deep Neural Networks are vulnerable to adversarial attacks.
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Statistical Challenges

(Schmidt et al. NeurIPS’18) The generalization gap in Adv-Robust

Classification is significantly larger than Standard Classification.
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Conditional Gaussian Model

(Mixture of two gaussians picture here)

Binary Classification with Conditional Gaussian Model Pµ,Σ:

p(y = 1) = p(y = −1) =
1

2
,

x |y = +1 ∼ N(+µ,Σ),

x |y = −1 ∼ N(−µ,Σ).

Minimize Robust Classification Error:

Rrobust(f ) = Pr[∃‖x ′ − x‖B ≤ ε, f (x ′) 6= y ]

where ‖ · ‖B is a norm, e.g. `p norm.
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Sample Complexity

”Adversarially Robust Generalization Requires More Data”:

Theorem ((Schmidt et al. NeurIPS’18))

When Σ = σ2I , ‖µ‖2 =
√
d , σ ≤ 1

32d
1/4,

adversarial perturbation ‖x ′ − x‖∞ ≤ 1
4 .

• O(1) samples sufficient for 99% standard accuracy.

• Ω̃(
√
d) samples necessary for 51% robust accuracy.

• Why do we need more data?

• What happens in other regimes?
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Contributions

• Understanding the sample complexity through the lens of

Statistical Minimax Theory.

• Introducing ”Adversarial Signal-to-Noise Ratio”, which explains

why robust classification requires more data.

• Near-optimal upper and lower bounds on minimax risk.

• ** Computationally efficient minimax-optimal estimator.

• ** Minimal assumptions.
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Minimax Theory

Our goal is to characterize the Statistical Minimax Error of robust

Gaussian classification:

min
f̂

max
Pµ,Σ∈D

[Rrobust(f̂ )− R∗robust]

where:

• D is a class of distributions.

• f̂ is any estimator based on n i.i.d samples {xi , yi}ni=1 ∼ Pµ,Σ.

• R∗robust is the smallest classification error of any classifier.
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Fisher’s LDA: Bayes Risk

When ε = 0, the problem reduces to Fisher’s LDA.

The smallest possible classification error R∗ is Φ̄( 1
2SNR), where:

• SNR is the Signal-to-Noise Ratio of the model:

SNR(Pµ,Σ) = 2
√
µTΣ−1µ.

• Φ̄ : Gaussian tail probability Φ̄(c) = PrX∼N(0,1)[X > c].

SNR characterizes the hardness of classification problem.
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Minimax Rate of Fisher LDA

Consider the family of distributions with a fixed SNR:

Dstd(r) := {Pµ,Σ|SNR(Pµ,Σ) = r}.

The following minimax rate is proved by prior works:

Theorem (Li et al. AISTATS’17)

min
f̂

max
P∈Dstd(r)

[R(f̂ )− R∗] ≥ Ω

(
e−( 1

8
+o(1))r2 · d

n

)
.

with a nearly-matching upper bound.
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Signal-to-Noise Ratio

Signal-to-Noise Ratio exactly characterizes the hardness of standard

Gaussian classification problem.

Can we find a similar quantity for the robust setting?

• SNR is not the correct answer!

• Two distributions with same SNR can have very different

optimal robust classification error (e.g. 0.1% vs 50%)!
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Adversarial Signal-to-Noise Ratio

We define Adversarial Signal-to-Noise Ratio(AdvSNR) as:

AdvSNR(Pµ,Σ) = min
‖z‖B≤ε

SNR(Pµ−z,Σ).

Using AdvSNR, we can re-formulate one of the main theorems in

(Bhagoji et al. ,NeurIPS 2019) as:

R∗robust = Φ̄(
1

2
AdvSNR).

which recovers the results in Fisher LDA when ε = 0!
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Main Result

Consider the family of distributions with a fixed AdvSNR:

Drobust(r) := {Pµ,Σ|AdvSNR(Pµ,Σ) = r}.

Our Main Theorem:

Theorem (Dan, Wei, Ravikumar, ICML’20)

min
f̂

max
P∈Drobust(r)

[Rrobust(f̂ )− R∗robust] ≥ Ω

(
e−( 1

8
+o(1))r2 · d

n

)
.

and there is a computationally efficient estimator which achieves

this minimax rate!

Generalization of (Li et al. 2017) in adversarially robust setting!
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Why does Adv-Robust Classification Require More Data?

The minimax rates for Standard vs. Adv-Robust classification:

exp{−1

8
SNR2}d

n
vs. exp{−1

8
AdvSNR2}d

n

• AdvSNR ≤ SNR, so Adv-Robust Risk always converges slower.

• Sometimes AdvSNR = Θ(1) and SNR = Θ(1), the

convergence is only a constant factor slower.

• Sometimes AdvSNR = Θ(1) and SNR = Θ(d), the

convergence is exp(Ω(d)) times slower!
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Upper Bound & Algorithm

• (Bhagoji et al. ,NeurIPS 2019) showed that a linear classifier

f (x) = sign(wT
0 x) has the minimal robust classification error,

where

w0 = Σ−1(µ− z0),

z0 = argmin
‖z‖B≤ε

(µ− z)TΣ−1(µ− z).

• Replace (µ,Σ) by their empirical counterpart (µ̂, Σ̂).

• Now you have an efficient algorithm that achieves the minimax

rate!
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Lower Bound

• Main idea: Black-Box Reduction

• Robust Classification is ”harder” than Standard Classification.

• For any distribution P with Signal-to-Noise Ratio r ,

• We can find a P ′ with AdvSNR r , such that for any classifier f ,

RobustExcessRiskP′(f ) ≥ StdExcessRiskP(f )

• Take minf maxP∈Dstd (r),

MinimaxRobustExcessRisk(Drobust(r))

≥MinimaxStdExcessRisk(Dstd(r)).

• Apply (Li et al. 2017) and we get the minimax lower bound.
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Summary

• In this paper, we provide the first statistical minimax optimality

result for Adversarially Robust Classification.

• We introduced AdvSNR, which characterizes the hardness of

Adv-Robust Gaussian Classification.

• We proved matching upper and lower bounds for minimax

excess risk, and an efficient, minimax-optimal algorithm.

• Adversarially Robust Classification requires More Data, because

adversarial perturbation decreases the Signal-to-Noise Ratio!
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