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ML Training with Decentralized Data

Federated LearningGeo-Distributed Learning
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Data Sovereignty and Privacy



Major Challenges in Decentralized ML

Federated LearningGeo-Distributed Learning
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Challenge 1: Communication Bottlenecks

Solutions: Federated Averaging, Gaia, Deep Gradient Compression



Major Challenges in Decentralized ML

Federated LearningGeo-Distributed Learning

4Solutions: Understudied! Is it a real problem?

Challenge 2: Data are often highly skewed (non-iid data)



Our Work in a Nutshell
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Geographical mammal images from Flickr

736K pictures in 42 mammal classes

Highly skewed labels among 

geographic regions
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Real-World 

Dataset



Skewed data labels are a fundamental and 
pervasive problem

The problem is even worse for DNNs with 
batch normalization

The degree of skew determines the 
difficulty of the problem
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Experimental 

Study



Replace batch normalization with                      
group normalization

SkewScout: communication-efficient
decentralized learning over                           
arbitrarily skewed data
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Proposed 

Solution



Real-World Dataset
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Flickr-Mammal Dataset

42 mammal 

classes from 

Open Images 

and ImageNet 40,000 

images 

per class

Clean images 

with PNAS

[Liu et al.,’18]

Reverse 

geocoding to 

country, 

subcontinent, 

and continent

736K Pictures with Labels and Geographic Information

https://doi.org/10.5281/zenodo.3676081

https://doi.org/10.5281/zenodo.3676081


Top-3 Mammals in Each Continent
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Each top-3 mammal takes 44-92% share of global images



Label Distribution Across Continents
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Africa Americas Asia Europe Oceania

Vast majority of mammals are dominated by 2-3 continents

The labels are even more skewed among subcontinents



Experimental Study
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Scope of Experimental Study

ML Application Decentralized Learning 
Algorithms

× ×

Skewness of Data 
Label Partitions

• Image Classification 

(with various DNNs 

and datasets)

• Face recognition

Gaia [NSDI’17]

FederatedAveraging [AISTATS’17]

DeepGradientCompression [ICLR’18]

2-5 Partitions --

more partitions are worse



Results: GoogLeNet over CIFAR-10
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FederatedAveraging (20X faster than BSP) DeepGradientCompression (30X faster than BSP)

All decentralized learning algorithms lose significant accuracy

Tight synchronization (BSP) is accurate but too slow



Similar Results across the Board
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Skewed data is a pervasive and fundamental problem

Even BSP loses accuracy for DNNs with Batch Normalization layers



Degree of Skew is a Key Factor
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CIFAR-10 with GN-LeNet

Degree of skew can determine the difficulty of the problem



Batch Normalization ―
Problem and Solution
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Background: Batch Normalization

W BN
Prev

Layer

Next 

Layer

[Ioffe & Szegedy, 2015]

Standard normal distribution

(μ = 0, σ = 1) in each minibatch 

at training time

Batch normalization enables larger learning rates and              

avoid sharp local minimum (generalize better)

Normalize with 

estimated global μ and σ

at test time



Batch Normalization with Skewed Data

20

0%

35%

70%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

M
in

ib
a
tc

h
 M

e
a
n

 

D
iv

e
rg

e
n

ce

Channel

Shuffled Data Skewed Data Minibatch Mean Divergence:
||Mean1 – Mean2|| / AVG(Mean1, Mean2)

CIFAR-10 with BN-LeNet (2 Partitions)

Minibatch μ and σ vary significantly among partitions

Global μ and σ do not work for all partitions



Solution: Use Group Normalization
[Wu and He, ECCV’18]
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N

Batch Normalization

C

H, W

Group Normalization

N
C

H, W

Designed for small minibatches

We apply as a solution for skewed data
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Results with Group Normalization
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GroupNorm recovers the accuracy loss for BSP

and reduces accuracy losses for decentralized algorithms



SkewScout: Decentralized learning 
over arbitrarily skewed data
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Overview of SkewScout

• Recall that degree of data skew determines difficulty

• SkewScout: Adapts communication to the                         
skew-induced accuracy loss

Model Travelling

Accuracy Loss 
Estimation

Communication 
Control

Minimize commutation when accuracy loss is acceptable 

Work with different decentralized learning algorithms



Evaluation of SkewScout
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All data points achieves the same validation accuracy 
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Significant saving over BSP

Only within 1.5X more than Oracle



Key Takeaways
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• Flickr-Mammal dataset: Highly skewed                 
label distribution in the real world

• Skewed data is a pervasive problem

• Batch normalization is particularly problematic

• SkewScout: adapts decentralized learning over 
arbitrarily skewed data

• Group normalization is a good alternative to 
batch normalization


