Evaluating the Performance of Reinforcement Learning Algorithms

Scott Jordan, Yash Chandak, Daniel Cohen, Mengxue Zhang, Philip Thomas

Why do we care?

Performance evaluations:

- 1. Justify novel algorithms or enhancements
- 2. Tell us what algorithms to use

If done correctly:

- Can identify solved problems
- Place emphasis on areas that need more research

RL Algorithms for the Real-world

Want:

- 1. High levels of performance
- 2. No expert knowledge required

As a result:

- 1. less time tuning algorithms
- 2. More time solving harder problems

Algorithm Performance Evaluations

Typical evaluation procedure:

- 1. Tune each algorithm's hyperparameters (e.g., policy structure, learning rate)
- 2. Run several trials of using tune parameters
- 3. Report performance (metrics, learning curve, etc.)

Need a new evaluation procedure!

This does not fit our needs:

Ignores the difficulty of applying algorithms

Evaluation Pipeline

A General Evaluation Question

Which algorithm(s) perform well across a wide variety of environments with little or no environment-specific tuning?

Existing evaluation procedures cannot answer this question

We develop techniques for:

- 1. Sampling performance metrics that reflect knowledge of how to use the algorithm
- 2. Normalizing scores to account for the intrinsic difficulties of each environment
- 3. Balancing the importance of each environment in the aggregate measure
- 4. Computing uncertainty over the whole process

Sampling Performance Without Tuning

• Formalize knowledge to use an algorithm

Complete algorithm definition

Sampling Performance Without Tuning

An algorithm is complete on an environment, when defined such that the only required input to the algorithm is the environment.

Making Complete Algorithm Definitions

Open research question!

methods

smart heuristics

Performance of Complete Algorithms

Comparisons Over Multiple Environments

Problem:

No common measure of performance

Desired normalization properties:

Same scale and center

Capture intr

Use cumulative distribution function

Aggregating Performance Measures

- Need to weight normalization functions
- Need to weight environments
- Avoid unintentional bias in weightings

Use game theory!

Environment

Two-Player Game

Quantifying Uncertainty

Quantifying Uncertainty

Takeaways

No need to tune hyperparameters

Can measure improvement in usability

Reliable estimates of uncertainty

Acknowledgements

Yash Chandak

Daniel Cohen

Mengxue Zhang

Prof. Philip S. Thomas

Questions?

Scott Jordan sjordan@cs.umass.edu

http://cics.umass.edu/sjordan | @UMassScott