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Why do we care?

Performance evaluations:
1. Justify novel algorithms or enhancements
2. Tell us what algorithms to use

If done correctly:
• Can identify solved problems
• Place emphasis on areas that need more research



RL Algorithms for the Real-world

Want:
1. High levels of performance
2. No expert knowledge required

As a result:
1. less time tuning algorithms 
2. More time solving harder problems



Algorithm Performance Evaluations

Typical evaluation procedure:
1. Tune each algorithm’s hyperparameters (e.g., policy structure,  learning rate)
2. Run several trials of using tune parameters
3. Report performance (metrics, learning curve, etc.)

This does not fit our needs:
• Ignores the difficulty of applying algorithms

Need a new evaluation procedure!
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Evaluation Pipeline

Account for 
difficulty applying 

an algorithm

Balance importance 
of each environment



A General Evaluation Question

Which algorithm(s) perform well across a wide variety of environments with little or no 
environment–specific tuning?

Existing evaluation procedures cannot answer this question

We develop techniques for:
1. Sampling performance metrics that reflect knowledge of how to use the algorithm
2. Normalizing scores to account for the intrinsic difficulties of each environment
3. Balancing the importance of each environment in the aggregate measure
4. Computing uncertainty over the whole process



Sampling Performance Without Tuning

• Formalize knowledge to use an algorithm

Complete algorithm definition



Sampling Performance Without Tuning

An algorithm is complete on an environment, when 
defined such that the only required input to the 

algorithm is the environment.

𝑋 ∼ alg (𝑀)

Performance 
sample

algorithm environment

No 
hyperparameters!



Making Complete Algorithm Definitions

• Open research question!

random sampling

methods

Manual

smart heuristics adaptive methods



Performance of Complete Algorithms

Diverging runs

Well tuned

Can measure improvements 
in usability!

Better algorithm



Comparisons Over Multiple Environments

Problem:
• No common measure of performance

Desired normalization properties:
• Same scale and center
• Capture intrinsic difficulty

Use cumulative distribution function



Normalizing Scores



Normalizing Scores



Normalizing Scores



Normalizing Scores

Large change in difficulty

Small change
in difficulty

Use weighted combination of all CDFs

Which algorithm to 
normalize against?



Aggregating Performance Measures

• Need to weight normalization 
functions
• Need to weight environments
• Avoid unintentional bias in weightings

Use game theory!
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Use 𝑞 from equilibrium solution to 
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Quantifying Uncertainty

Sources of uncertainty Confidence intervals



Quantifying Uncertainty

Valid for any distribution

Assumptions of normality

No guarantee

Adapt step sizes Lots of hyperparameters



Takeaways

No need to tune 
hyperparameters

Can measure 
improvement in 

usability 

Reliable estimates 
of uncertainty
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