
Evaluating the Performance of
Reinforcement Learning Algorithms

Scott Jordan, Yash Chandak, Daniel Cohen, Mengxue Zhang, Philip
Thomas

Why do we care?

Performance evaluations:
1. Justify novel algorithms or enhancements
2. Tell us what algorithms to use

If done correctly:
• Can identify solved problems
• Place emphasis on areas that need more research

RL Algorithms for the Real-world

Want:
1. High levels of performance
2. No expert knowledge required

As a result:
1. less time tuning algorithms
2. More time solving harder problems

Algorithm Performance Evaluations

Typical evaluation procedure:
1. Tune each algorithm’s hyperparameters (e.g., policy structure, learning rate)
2. Run several trials of using tune parameters
3. Report performance (metrics, learning curve, etc.)

This does not fit our needs:
• Ignores the difficulty of applying algorithms

Need a new evaluation procedure!

$OJRULWKPV

(QYLURQPHQWV

VDPSOH�SHUIRUPDQFH

'DWD�FROOHFWLRQ 'DWD�$JJUHJDWLRQ

QRUPDOL]DWLRQ DJJUHJDWLRQ

5HSRUW�5HVXOWV

4XDQWLI\�
XQFHUWDLQW\

Evaluation Pipeline

Account for
difficulty applying

an algorithm

Balance importance
of each environment

A General Evaluation Question

Which algorithm(s) perform well across a wide variety of environments with little or no
environment–specific tuning?

Existing evaluation procedures cannot answer this question

We develop techniques for:
1. Sampling performance metrics that reflect knowledge of how to use the algorithm
2. Normalizing scores to account for the intrinsic difficulties of each environment
3. Balancing the importance of each environment in the aggregate measure
4. Computing uncertainty over the whole process

Sampling Performance Without Tuning

• Formalize knowledge to use an algorithm

Complete algorithm definition

Sampling Performance Without Tuning

An algorithm is complete on an environment, when
defined such that the only required input to the

algorithm is the environment.

𝑋 ∼ alg (𝑀)

Performance
sample

algorithm environment

No
hyperparameters!

Making Complete Algorithm Definitions

• Open research question!

random sampling

methods

Manual

smart heuristics adaptive methods

Performance of Complete Algorithms

Diverging runs

Well tuned

Can measure improvements
in usability!

Better algorithm

Comparisons Over Multiple Environments

Problem:
• No common measure of performance

Desired normalization properties:
• Same scale and center
• Capture intrinsic difficulty

Use cumulative distribution function

Normalizing Scores

Normalizing Scores

Normalizing Scores

Normalizing Scores

Large change in difficulty

Small change
in difficulty

Use weighted combination of all CDFs

Which algorithm to
normalize against?

Aggregating Performance Measures

• Need to weight normalization
functions
• Need to weight environments
• Avoid unintentional bias in weightings

Use game theory!

𝑍! =#
"

ℳ

𝑞"#
$

𝒜

𝑞$E 𝐹!(𝑥 𝑚)

Aggregate
performance
of algorithm

x

Environment
weights

Normalization
weights

Normalization
function

Two-Player Game
Pl

ay
er

 p
Player q

𝑌

𝑀

𝑋 E 𝐹"(𝑋 𝑀)maxmin
𝑝 𝑞

Normalizing
Distribution

Executing
Algorithm

Environment

Use 𝑞 from equilibrium solution to
evaluate each algorithm

𝑝

Executing
Algorithm

Gridworld,
Chain,
Cart-Pole,
Mountain
Car,
Acrobot
Bicycle

𝑞

Normalization
Algorithm

Environment

$OJRULWKPV

(QYLURQPHQWV

6DPSOH�XVLQJ�
FRPSOHWH�GHILQLWLRQ

'DWD�FROOHFWLRQ 'DWD�$JJUHJDWLRQ

QRUPDOL]H�
ZLWK�&')

:HLJKW�
HQYLURQPHQWV

$JJUHJDWH�
VFRUH

Quantifying Uncertainty

Sources of uncertainty Confidence intervals

Quantifying Uncertainty

Valid for any distribution

Assumptions of normality

No guarantee

Adapt step sizes Lots of hyperparameters

Takeaways

No need to tune
hyperparameters

Can measure
improvement in

usability

Reliable estimates
of uncertainty

Acknowledgements

Daniel Cohen Prof. Philip S.
Thomas

Yash Chandak Mengxue Zhang

Questions?
Scott Jordan

sjordan@cs.umass.edu

http://cics.umass.edu/sjordan | @UMassScott

