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Invariant local minima become saddle points.
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Setup

» Data: m sample points of dimension n:

— Input: ; € R”, Output: y; € R" for j=1,...,m.
In matrix form: X € R"*™ Y € R*»*™,

» LAE: A neural network with linear activation functions and
single hidden layer of width p < n.
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Setup

» Data: m sample points of dimension n:
— Input: ; € R”, Output: y; € R" for j =1,...,m.
— In matrix form: X € R"*™_ Y € R"*™.

» LAE: A neural network with linear activation functions and
single hidden layer of width p < n.
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— The weights: The encoder matrix B, and the decoder matrix A.
— The global map is y; = ABx; or Y = ABX.
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» The MSE loss: L(A,B) = |[Y — ABX|3.

— If (A*, B*) is a local minimum of L then for any invertible
C € RP*P (A*C,C~'B*) is another local minima:
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» The MSE loss: L(A,B) = |[Y — ABX|3.

» The proposed loss:
where, I, = diag(1,---,1,0,---,0) € RP*P.
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A Visualization: MSE Loss
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The loss functions

» The MSE loss: L(A,B) =Y — ABX]|3.

» The proposed loss:
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W
(2

— Intuition: (Sequential) As an example look at p = 3, where
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The loss functions

» The MSE loss: L(A,B) =Y — ABX]|3.

» The proposed loss:

where, I, = diag(1,---,1,0,---,0) € RP*P,
A(—/
(3

— Intuition: (Sequential) As an example look at p = 3, where

10 0 10 0 100
Lis=|0 0 0| ,Ls=|0 1 0| ,I3z=[0 1 0
00 0 00 0 00 1

— But does this work simultaneously? And is it computationally
feasible (p can be large)?

— WEell, it does and it is! But before getting into details let’s
discuss some implications ...



Implications

» Let (A*, B¥) be the local minimum of MSE loss, where the
columns of A* are the largest eigenvectors of the sample
covariance matrix, then for any invertible C' € RP*P,
(A*C,C~!'B*) is another local minima.

— Numerically, on the same dataset different runs with
different initializations lead to different optimal points.
— Almost surely none will represent the principal directions.

» The only local minimum of the loss . is (A*, B*), up to the
normalization of the columns.

— The loss I enables low rank decomposition as a single
optimization block that can be incorporated as part of a
larger pipeline.

— Potentially enabling LAEs to compete with other
approaches for low rank decomposition.
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» The critical point equations of L and
For L(A, B): For :
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Critical Points

» The critical point equations of L and
For L(A, B): For :
A'ABY,, = A'Z,,, | (5,0(A'A)BX,, = T1T,A'%,,,
ABY,B' = ¥,B' | A(5,(BX;,;B")) = X,,B'T,,

where,

— A’ is the transpose of A.

- ¥, = XX', ¥, =YX’ are covariance matrices.
— o is the (element-wise) Hadamard product, and
— T,, and S, are

Tp:dla‘g(p7p_17 )1)7

p p—-1 -1 4 3 2 1

p—1 p-1 1 33 2 1
Sp: : 1 7e'g‘S4: 2 2 2 1
1 1 11 11 1 1



Results 1

> Every critical point of is a critical point of
L(A, B), but not the other way around.
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— The it column of U, is a unit eigenvector of

Y= EWE;; 34y corresponding the ith largest eigenvalue.
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— The it column of U, is a unit eigenvector of

Y= EWE;; 34y corresponding the ith largest eigenvalue.

— D, is a diagonal matrix with nonzero diagonal elements,

and Cp € GL,(R).
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Results 1

» Every critical point of is a critical point of
L(A, B), but not the other way around.

» Local minima of L, and L:

For L(A, B): For
A*= Uy, C), A*= UipDy,
B*= C,'Uj,2,%;;, | B'= D,'Uj, 2,2,
— The it column of U, is a unit eigenvector of
Y= EWE;; 34y corresponding the ith largest eigenvalue.
— D, is a diagonal matrix with nonzero diagonal elements,
and Cp € GL,(R).

» The characterization of the loss landscape:

— The structure of full rank saddle points.
— The structure of low rank saddle points (rather involved!).
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Results 11

» The MSE loss L and our loss /. can be written as

L(A,B) =pTi(8,,) - 2Tr (ABX,,) + Tr (B'A’ABY,,)
=pTr(X¥,,) —2Tr (AT,BX,,)

+Tr (B’ (5,7 (A'A)) BX,,) .
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» The analytical gradients are:

dgL(A,B)W = —2(A'S,, — A/ABX,,,W)F,
dp W =-2(1,A'S,, — (5,0 (A’A)) BE,,, W),

in direction of W € RP*™, The gradient for A is similar.
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=pTr(X¥,,) —2Tr (AT,BX,,)

+Tr (B’ (5,7 (A'A)) BX,,) .

» The analytical gradients are:

dgL(A,B)W = —2(A'S,, — A/ABX,,,W)F,
dp W =-2(1,A'S,, — (5,0 (A’A)) BE,,, W),

in direction of W € RP*™, The gradient for A is similar.

» Finally, since the loss function is explicitly provided, any
optimization method that works with MSE loss is usable
with the proposed loss.
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