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Overview

I Linear Autoencoder (LAE) with Mean Square Error (MSE).
The classical results:

– Loss surface has been analytically characterized.
– All local minima are global minima.
– The columns of the optimal decoder does not identify the

principal directions but only their low dimensional subspace (the
so-called invariance problem).

I We present a new loss function for LAE:

– Analytically characterize the loss landscape.
– All local minima are global minima.
– The columns of the optimal decoder span the principal directions.
– Invariant local minima become saddle points.
– Computational complexity is of the same order of MSE loss.
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Setup

I Data: m sample points of dimension n:

– Input: xj ∈ Rn, Output: yj ∈ Rn for j = 1, . . . ,m.
– In matrix form: X ∈ Rn×m, Y ∈ Rn×m.

I LAE: A neural network with linear activation functions and
single hidden layer of width p < n.

B ∈ Rp×n

Encoder
A ∈ Rn×p

Decoder

x
j
∈
R
n

ŷ
j
∈
R
n

p < n

– The weights: The encoder matrix B, and the decoder matrix A.
– The global map is ŷj = ABxj or Ŷ = ABX.
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The loss functions

I The MSE loss: L̃(A,B) := ‖Y −ABX‖2F .

– If (A∗,B∗) is a local minimum of L̃ then for any invertible
C ∈ Rp×p, (A∗C,C−1B∗) is another local minima:

L̃(A∗C,C−1B∗) =
∥∥Y −A∗CC−1B∗X

∥∥2
F

= L̃(A∗,B∗).

I The proposed loss: L(A,B) :=
∑p

i=1 ‖Y −AIi;pBX‖2F ,
where, Ii;p = diag(1, · · · , 1︸ ︷︷ ︸

i

, 0, · · · , 0) ∈ Rp×p.
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A Visualization: MSE Loss
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A Visualization: Proposed Loss
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The loss functions

I The MSE loss: L̃(A,B) := ‖Y −ABX‖2F .

– If (A∗,B∗) is a local minimum of L̃ then for any invertible
C ∈ Rp×p, (A∗C,C−1B∗) is another local minima:
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F

= L̃(A∗,B∗).

I The proposed loss: L(A,B) :=
∑p

i=1 ‖Y −AIi;pBX‖2F ,

where, Ii;p = diag(1, · · · , 1︸ ︷︷ ︸
i

, 0, · · · , 0) ∈ Rp×p.

– Intuition: (Sequential) As an example look at p = 3, where

I1;3 =

1 0 0
0 0 0
0 0 0

 , I2;3 =

1 0 0
0 1 0
0 0 0

 , I3;3 =

1 0 0
0 1 0
0 0 1

 .

– But does this work simultaneously? And is it computationally
feasible (p can be large)?

– Well, it does and it is! But before getting into details let’s
discuss some implications ...
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Implications

I Let (A∗,B∗) be the local minimum of MSE loss, where the
columns of A∗ are the largest eigenvectors of the sample
covariance matrix, then for any invertible C ∈ Rp×p,
(A∗C,C−1B∗) is another local minima.

– Numerically, on the same dataset different runs with
different initializations lead to different optimal points.

– Almost surely none will represent the principal directions.

I The only local minimum of the loss L is (A∗,B∗), up to the
normalization of the columns.

– The loss L enables low rank decomposition as a single
optimization block that can be incorporated as part of a
larger pipeline.

– Potentially enabling LAEs to compete with other
approaches for low rank decomposition.
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Critical Points

I The critical point equations of L̃ and L.
For L̃(A,B): For L(A,B):

A′ABΣxx = A′Σyx, (Sp◦(A′A))BΣxx = TpA
′Σyx,

ABΣxxB
′ = ΣyxB

′, A(Sp◦(BΣxxB
′)) = ΣyxB

′Tp,

where,

– A′ is the transpose of A.
– Σxx = XX ′, Σyx = Y X ′ are covariance matrices.
– ◦ is the (element-wise) Hadamard product, and
– Tp, and Sp are

Tp = diag (p, p− 1, · · · , 1) ,

Sp =


p p− 1 · · · 1

p− 1 p− 1 · · · 1
...

...
. . . 1

1 1 1 1

 , e.g. S4 =


4 3 2 1
3 3 2 1
2 2 2 1
1 1 1 1

 .
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Results I

I Every critical point of L(A,B) is a critical point of
L̃(A,B), but not the other way around.

I Local minima of L, and L̃:

For L̃(A,B): For L(A,B):
A∗= U1:pCp, A∗= U1:pDp,
B∗= C−1p U ′1:pΣyxΣ

−1
xx , B∗= D−1p U ′1:pΣyxΣ

−1
xx ,

– The ith column of U1:p is a unit eigenvector of
Σ := ΣyxΣ

−1
xxΣxy corresponding the ith largest eigenvalue.

– Dp is a diagonal matrix with nonzero diagonal elements,
and Cp ∈ GLp(R).

I The characterization of the loss landscape:

– The structure of full rank saddle points.
– The structure of low rank saddle points (rather involved!).
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Results II

I The MSE loss L̃ and our loss L can be written as

L̃(A,B) = pTr(Σyy)− 2 Tr (ABΣxy) + Tr
(
B′A′ABΣxx

)
,

L(A,B) = pTr(Σyy)− 2 Tr (ATpBΣxy)

+ Tr
(
B′
(
Sp◦

(
A′A

))
BΣxx

)
.

I The analytical gradients are:

dBL̃(A,B)W = −2〈A′Σyx −A′ABΣxx,W 〉F ,
dBL(A,B)W = −2〈TpA

′Σyx −
(
Sp◦

(
A′A

))
BΣxx,W 〉F ,

in direction of W ∈ Rp×n. The gradient for A is similar.

I Finally, since the loss function is explicitly provided, any
optimization method that works with MSE loss is usable
with the proposed loss.
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