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Question Key Idea
What should the optimal bids be for the solution of the Global MDP 
to emerge?

The optimal bid is the optimal Q value 𝑸∗ 𝒔𝒕, 𝝎𝒊 for activating agent 
𝜔$ at state 𝑠%.

For what auction mechanism would these optimal bids be an 
equilibrium strategy?

By defining the agents’ valuations 𝑣$(𝑠) as 𝑄∗ 𝑠, 𝜔$ , under the 
Vickrey auction it is a dominant strategy to truthfully bid 𝑄∗ 𝑠, 𝜔$ .

How can we adapt this auction mechanism for discrete-action MDPs? Temporally couple the agents in a market: An agent’s valuation of 
𝑠% is defined by how much it can sell the product 𝑠%&' of executing its 
transformation on 𝑠%.

How can we avoid suboptimal equilibria? Redundancy enforces credit conservation that helps avoid 
suboptimal equilibria.

How can we translate the auction mechanism into a decentralized 
reinforcement learning algorithm?

Define the auction utility as the agents’ reinforcement learning 
objective.
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The optimal strategy is to truthfully bid its own 
valuation: 

𝑏) ← 𝑣)

Implication: Set 𝑣( 𝑠$ = 𝑄∗ 𝑠$ , 𝜔( ! 

What Should the Auction Mechanism be?

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

𝑠$

Winner

Loser

Loser
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𝑣# 𝑠$ −?

0

0



Assume
Each agent 𝜔( has a valuation 𝑣((𝑠$) for state 𝑠$

Question
What should the agents’ utilities be?

Vickrey Auction Utilities!
Losers: 𝑢) 𝑏 = 0
Winner: 𝑢) 𝑏 = 𝑣) −max

*+)
𝑏*

Want: Dominant Strategy Incentive Compatibility
The optimal strategy is to truthfully bid its own 
valuation: 

𝑏) ← 𝑣)

Implication: Set 𝑣( 𝑠$ = 𝑄∗ 𝑠$ , 𝜔( ! 

Vickrey Auction

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

𝑠$

Winner

Loser

Loser
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𝑣# 𝑠$ −max
*+#

𝑏$
*

0

0



A Recipe for Relating Local and Global Objectives

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

0

𝑄∗ 𝑠$ , 𝜔# −max
*+#

𝑏$
*

0

𝑠$

= 𝑣! 𝑠$ = 𝑄∗(𝑠$ , 𝜔!)𝑏$!

= 𝑣# 𝑠$ = 𝑄∗(𝑠$ , 𝜔#)𝑏$#

= 𝑣" 𝑠$ = 𝑄∗(𝑠$ , 𝜔")𝑏$"

Winner

Loser

Loser
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Assume
Each agent 𝜔( has a valuation 𝑣((𝑠$) for state 𝑠$

Question
What should the agents’ utilities be?

Vickrey Auction Utilities!
Losers: 𝑢) 𝑏 = 0
Winner: 𝑢) 𝑏 = 𝑣) −max

*+)
𝑏*

Want: Dominant Strategy Incentive Compatibility
The optimal strategy is to truthfully bid its own 
valuation: 

𝑏) ← 𝑣)

Implication: Set 𝑣( 𝑠$ = 𝑄∗ 𝑠$ , 𝜔( ! 

𝜔∗ = argmax
(
𝑄∗ 𝑠$ , 𝜔(

Environment

𝜔

𝑠

Auction

𝜔! 𝜔"𝜔#
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Question Key Idea
What should the optimal bids be for the solution of the Global MDP 
to emerge?

Define the optimal bid as the optimal Q value 𝑸∗ 𝒔𝒕, 𝝎𝒊 for 
activating agent 𝜔$ at state 𝑠%.

For what auction mechanism would these optimal bids be an 
equilibrium strategy?

By defining the agents’ valuations 𝑣$(𝑠) as 𝑄∗ 𝑠, 𝜔$ , under the 
Vickrey auction it is a dominant strategy to truthfully bid 𝑄∗ 𝑠, 𝜔$ .

How can we adapt this auction mechanism for discrete-action MDPs? Temporally couple the agents in a market: An agent’s valuation of 
𝑠% is defined by how much it can sell the product 𝑠%&' of executing its 
transformation on 𝑠%.

How can we avoid suboptimal equilibria? Redundancy enforces credit conservation that helps avoid 
suboptimal equilibria.

How can we translate the auction mechanism into a decentralized 
reinforcement learning algorithm?

Define the auction utility as the agents’ reinforcement learning 
objective.



But wait…
Optimal Q values are usually unknown!
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Question Key Idea
What should the optimal bids be for the solution of the Global MDP 
to emerge?

Define the optimal bid as the optimal Q value 𝑸∗ 𝒔𝒕, 𝝎𝒊 for 
activating agent 𝜔$ at state 𝑠%.

For what auction mechanism would these optimal bids be an 
equilibrium strategy?

By defining the agents’ valuations 𝑣$(𝑠) as 𝑄∗ 𝑠, 𝜔$ , under the 
Vickrey auction it is a dominant strategy to truthfully bid 𝑄∗ 𝑠, 𝜔$ .

How can we adapt this auction mechanism for discrete-action MDPs? Temporally couple the agents in a market: An agent’s valuation of 
𝑠% is defined by how much it can sell the product 𝑠%&' of executing its 
transformation on 𝑠%.

How can we avoid suboptimal equilibria? Redundancy enforces credit conservation that helps avoid 
suboptimal equilibria.

How can we translate the auction mechanism into a decentralized 
reinforcement learning algorithm?

Define the auction utility as the agents’ reinforcement learning 
objective.



Environment

𝜔!

𝜔!"

𝜔#

𝜔#"

𝜔$

𝜔$"

𝑠$&"

𝜔!

𝜔!"

𝜔#

𝜔#"

𝜔$

𝜔$"

𝑠$

𝑠$&!

𝜔!

𝜔!"

𝜔#

𝜔#"

𝜔$

𝜔$"

𝛾𝑏$&!!!

𝑟(𝑠$ , 𝜔$#,)

−𝑏$#

𝛾𝑏$&""

𝑟(𝑠$&!, 𝜔$&!! )

−𝑏$&!!
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Key Idea:

Let agents buy and sell states to each other in a 
market across time



Environment

𝜔!

𝜔!"

𝜔#

𝜔#"

𝜔$

𝜔$"

𝑠$&"

𝜔!

𝜔!"

𝜔#

𝜔#"

𝜔$

𝜔$"

𝑠$

𝑠$&!

𝜔!

𝜔!"

𝜔#

𝜔#"

𝜔$

𝜔$"

𝛾𝑏$&!!!

𝑟(𝑠$ , 𝜔$#,)

−𝑏$#

𝛾𝑏$&""

𝑟(𝑠$&!, 𝜔$&!! )

−𝑏$&!!
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Key Idea:

Let agents buy and sell states to each other in a 
market across time

An agent’s valuation of 𝑠! is defined by how much it can sell the 
product 𝑠!"# of executing its transformation on 𝑠!



Environment

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

𝑏$!

𝑏$#

𝑏$"

𝑠$

Bidders
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Environment

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

𝑏$!

𝑏$#

𝑏$"

𝑠$

Winner

Loser

Loser
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Environment

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

𝑠$ 𝑠$&!
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Environment

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

𝑠$ 𝑠$&!

𝑟(𝑠$ , 𝜔$#)
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Environment

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

𝑠$&!𝑠$

Seller

Bidders
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Environment

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

𝑏$&!!

𝑏$&!#

𝑏$&!"

𝑠$&!𝑠$

Seller

Bidders
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Environment

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

𝑏$&!!

𝑏$&!#

𝑏$&!"

𝑠$&!𝑠$

Seller Loser

Winner

Loser
73



Environment

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Seller

Buyer

𝛾𝑏$&!!
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Environment

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Seller

Buyer

𝛾𝑏$&!!

𝑟(𝑠$ , 𝜔$#)
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Environment

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Seller

Buyer

𝛾𝑏$&!!

𝑟(𝑠$ , 𝜔$#)

Valuations

Before:
𝑣) 𝑠$ = 𝑄∗ 𝑠$𝜔$)

Now:
𝑣) 𝑠$ = 𝑟 𝑠$ , 𝜔$) + 𝛾max

(
𝑏$&!(
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Environment

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Seller

Buyer

𝛾𝑏$&!!

𝑟(𝑠$ , 𝜔$#)

−max
*+#

𝑏$
*

0

0

Valuations

Before:
𝑣) 𝑠$ = 𝑄∗ 𝑠$𝜔$)

Now:
𝑣) 𝑠$ = 𝑟 𝑠$ , 𝜔$) + 𝛾max

(
𝑏$&!(

Utilities

Winner’s utility
𝑢) 𝑏 = 𝑣) −max

*+)
𝑏*

Loser’s utility
𝑢) 𝑏 = 0
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Question Key Idea
What should the optimal bids be for the solution of the Global MDP 
to emerge?

Define the optimal bid as the optimal Q value 𝑸∗ 𝒔𝒕, 𝝎𝒊 for 
activating agent 𝜔$ at state 𝑠%.

For what auction mechanism would these optimal bids be an 
equilibrium strategy?

By defining the agents’ valuations 𝑣$(𝑠) as 𝑄∗ 𝑠, 𝜔$ , under the 
Vickrey auction it is a dominant strategy to truthfully bid 𝑄∗ 𝑠, 𝜔$ .

How can we adapt this auction mechanism for discrete-action MDPs? Temporally couple the agents in a market: An agent’s valuation of 
𝑠% is defined by how much it can sell the product 𝑠%&' of executing its 
transformation on 𝑠%.

How can we avoid suboptimal equilibria? Redundancy enforces credit conservation that helps avoid 
suboptimal equilibria.

How can we translate the auction mechanism into a decentralized 
reinforcement learning algorithm?

Define the auction utility as the agents’ reinforcement learning 
objective.



Proposition: If the utilities are defined as below, it 
is a Nash equilibrium for every primitive to bid 

their optimal Q value in the Global MDP.

Valuations

Before:

𝑣) 𝑠$ = 𝑄∗ 𝑠$ , 𝜔$)

Now:

𝑣) 𝑠$ = 𝑟 𝑠$ , 𝜔$) + 𝛾max
(
𝑏$&!(

Utilities

Winners:

𝑢) 𝑏 = 𝑟 𝑠$ , 𝜔$) + 𝛾max
(
𝑏$&!( −max

*+)
𝑏*

Losers:

𝑢) 𝑏 = 0
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But wait…
Utility is not conserved!
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Environment

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Seller

Buyer

𝛾𝑏$&!!

𝑟(𝑠$ , 𝜔$#)

−max
*+#

𝑏$
*
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Environment

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Seller

𝛾𝑏$&!!

𝑟(𝑠$ , 𝜔$#)

−max
*+#

𝑏$
*

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

𝛾𝑏$&""

𝑟(𝑠$&!, 𝜔$&!! )

−max
*+!

𝑏$&!
*

Buyer
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Environment

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Seller

𝑟(𝑠$ , 𝜔$#)

−max
*+#

𝑏$
*

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

𝛾𝑏$&""

𝑟(𝑠$&!, 𝜔$&!! )

Buyer

𝛾𝑏$&!!

−max
*+!

𝑏$&!
*

𝑏$&!!

𝜔# is paid with the highest bid at 𝑡 + 1 …
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Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

Seller

𝑟(𝑠$ , 𝜔$#)

−max
*+#

𝑏$
*

Transformation

Bidding Policy

𝜔#

Transformation

Bidding Policy

𝜔!

Transformation

Bidding Policy

𝜔"

𝛾𝑏$&""

𝑟(𝑠$&!, 𝜔$&!! )

Buyer

𝛾𝑏$&!!

−max
*+!

𝑏$&!
*

𝑏$&!!

𝜔# is paid with the highest bid at 𝑡 + 1 …

… but 𝜔! only pays the second highest bid at 𝑡 + 1!
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Question Key Idea
What should the optimal bids be for the solution of the Global MDP 
to emerge?

Define the optimal bid as the optimal Q value 𝑸∗ 𝒔𝒕, 𝝎𝒊 for 
activating agent 𝜔$ at state 𝑠%.

For what auction mechanism would these optimal bids be an 
equilibrium strategy?

By defining the agents’ valuations 𝑣$(𝑠) as 𝑄∗ 𝑠, 𝜔$ , under the 
Vickrey auction it is a dominant strategy to truthfully bid 𝑄∗ 𝑠, 𝜔$ .

How can we adapt this auction mechanism for discrete-action MDPs? Temporally couple the agents in a market: An agent’s valuation of 
𝑠% is defined by how much it can sell the product 𝑠%&' of executing its 
transformation on 𝑠%.

How can we avoid suboptimal equilibria? Redundancy enforces credit conservation that helps avoid 
suboptimal equilibria.

How can we translate the auction mechanism into a decentralized 
reinforcement learning algorithm?

Define the auction utility as the agents’ reinforcement learning 
objective.
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!
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𝜔!"
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𝜔#"

𝜔$

𝜔$"

𝑏$!

𝑏$#

𝑏$"

𝑏$!
!

𝑏$#
!

𝑏$"
!

𝑏$# = 𝑏$#
!

𝑏$! = 𝑏$!
!

𝑏$" = 𝑏$"
!
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𝑟(𝑠$ , 𝜔$#,)
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𝑟(𝑠$ , 𝜔$#,)

−𝑏$#

𝛾𝑏$&""

𝑟(𝑠$&!, 𝜔$&!! )

−𝑏$&!!

𝑏$&!!!

𝜔# is paid with the 𝑏$&!!! …

… which is equivalent to 𝑏$&!! , what 𝜔! pays
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Utilities

Winners:

𝑢) 𝑏 = 𝑟 𝑠$ , 𝜔$) + 𝛾max
(
𝑏$&!( −max

*+)
𝑏*

Losers:

𝑢) 𝑏 = 0

Main Result: Cloned Vickrey Society

92

Cloned Vickrey Society 

Environment

𝜔

𝑠

Vickrey Auction

𝜔! 𝜔"𝜔# 𝜔!! 𝜔"!𝜔#!



Theorem: In a Cloned Vickrey Society, it is a Nash 
equilibrium for every primitive to bid their optimal 
Q value in the Global MDP and utility is conserved.

Utilities

Winners:

𝑢) 𝑏 = 𝑟 𝑠$ , 𝜔$) + 𝛾max
(
𝑏$&!( −max

*+)
𝑏*

Losers:

𝑢) 𝑏 = 0
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Cloned Vickrey Society 

Environment

𝜔

𝑠

Vickrey Auction

𝜔! 𝜔"𝜔# 𝜔!! 𝜔"!𝜔#!
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Question Key Idea
What should the optimal bids be for the solution of the Global MDP 
to emerge?

Define the optimal bid as the optimal Q value 𝑸∗ 𝒔𝒕, 𝝎𝒊 for 
activating agent 𝜔$ at state 𝑠%.

For what auction mechanism would these optimal bids be an 
equilibrium strategy?

By defining the agents’ valuations 𝑣$(𝑠) as 𝑄∗ 𝑠, 𝜔$ , under the 
Vickrey auction it is a dominant strategy to truthfully bid 𝑄∗ 𝑠, 𝜔$ .

How can we adapt this auction mechanism for discrete-action MDPs? Temporally couple the agents in a market: An agent’s valuation of 
𝑠% is defined by how much it can sell the product 𝑠%&' of executing its 
transformation on 𝑠%.

How can we avoid suboptimal equilibria? Redundancy enforces credit conservation that helps avoid 
suboptimal equilibria.

How can we translate the auction mechanism into a decentralized 
reinforcement learning algorithm?

Define the auction utility as the agents’ reinforcement learning 
objective.



From Equilibria to Learning Objectives

Each agent learns a bidding policy by optimizes their utility as reward:

Train bidding policies using standard reinforcement learning algorithms

Society: credit assignment global in space and time
Agent: credit assignment local in space and time

Winners:

𝑢) 𝑏 = 𝑟 𝑠$ , 𝜔$) + 𝛾max
(
𝑏$&!( −max

*+)
𝑏*
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Decentralized Reinforcement Learning

Each agent learns a bidding policy by optimizes their utility as reward:

Train bidding policies using standard reinforcement learning algorithms

Society: an emergent solution that is global in space and time
Agent: learns via credit assignment local in space and time

Winners:

𝑢) 𝑏 = 𝑟 𝑠$ , 𝜔$) + 𝛾max
(
𝑏$&!( −max

*+)
𝑏*
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Question Key Idea
What should the optimal bids be for the solution of the Global MDP 
to emerge?

Define the optimal bid as the optimal Q value 𝑸∗ 𝒔𝒕, 𝝎𝒊 for 
activating agent 𝜔$ at state 𝑠%.

For what auction mechanism would these optimal bids be an 
equilibrium strategy?

By defining the agents’ valuations 𝑣$(𝑠) as 𝑄∗ 𝑠, 𝜔$ , under the 
Vickrey auction it is a dominant strategy to truthfully bid 𝑄∗ 𝑠, 𝜔$ .

How can we adapt this auction mechanism for discrete-action MDPs? Temporally couple the agents in a market: An agent’s valuation of 
𝑠% is defined by how much it can sell the product 𝑠%&' of executing its 
transformation on 𝑠%.

How can we avoid suboptimal equilibria? Redundancy enforces credit conservation that helps avoid 
suboptimal equilibria.

How can we translate the auction mechanism into a decentralized 
reinforcement learning algorithm?

Define the auction utility as the agents’ reinforcement learning 
objective, yielding a decentralized reinforcement learning algorithm 
for the Global MDP.
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Assumptions Key Idea
Assume the agents 𝜔$ know their valuations as 

𝑣$ 𝑠% = 𝑄∗ 𝑠% , 𝜔%$

Dominant strategy equilibrium in auction = solution to Global MDP
Pro: provable dominant strategy equilibrium
Con: assumes optimal Q-values are known

Define the optimal bid as the optimal Q value 𝑸∗ 𝒔𝒕, 𝝎𝒊 for 
activating agent 𝜔$ at state 𝑠%.

By defining the agents’ valuations 𝑣$(𝑠) as 𝑄∗ 𝑠, 𝜔$ , under the 
Vickrey auction it is a dominant strategy to truthfully bid 𝑄∗ 𝑠, 𝜔$ .

Assume the agents 𝜔$ know their valuations as 
𝑣$ 𝑠% = 𝑟 𝑠% , 𝜔%$ + 𝛾max

(
𝑏%&'(

Nash equilibrium in auction = solution to Global MDP
Pro: does not assume optimal Q-value is known
Con: assumes valuations are known

Temporally couple the agents in a market: An agent’s valuation of 
𝑠% is defined by how much it can sell the product 𝑠%&' of executing its 
transformation on 𝑠%.

Redundancy enforces credit conservation that helps avoid 
suboptimal equilibria.

Assume the agents 𝜔$ learn their valuations through interaction.

Nash equilibrium in auction = solution to Global MDP
Pro: does not assume valuations are known
Con: difficult to prove convergence to equilibrium

Define the auction utility as the agents’ reinforcement learning 
objective, yielding a decentralized reinforcement learning algorithm 
for the Global MDP.



Contributions

99

Assumptions Key Idea
Assume the agents 𝜔$ know their valuations as 

𝑣$ 𝑠% = 𝑄∗ 𝑠% , 𝜔%$

Dominant strategy equilibrium in auction = solution to Global MDP
Pro: provable dominant strategy equilibrium
Con: assumes optimal Q-values are known

Define the optimal bid as the optimal Q value 𝑸∗ 𝒔𝒕, 𝝎𝒊 for 
activating agent 𝜔$ at state 𝑠%.

By defining the agents’ valuations 𝑣$(𝑠) as 𝑄∗ 𝑠, 𝜔$ , under the 
Vickrey auction it is a dominant strategy to truthfully bid 𝑄∗ 𝑠, 𝜔$ .

Assume the agents 𝜔$ know their valuations as 
𝑣$ 𝑠% = 𝑟 𝑠% , 𝜔%$ + 𝛾max

(
𝑏%&'(

Nash equilibrium in auction = solution to Global MDP
Pro: does not assume optimal Q-value is known
Con: assumes valuations are known

Temporally couple the agents in a market: An agent’s valuation of 
𝑠% is defined by how much it can sell the product 𝑠%&' of executing its 
transformation on 𝑠%.

Redundancy enforces credit conservation that helps avoid 
suboptimal equilibria.

Assume the agents 𝜔$ learn their valuations through interaction.

Nash equilibrium in auction = solution to Global MDP
Pro: does not assume valuations are known
Con: difficult to prove convergence to equilibrium

Define the auction utility as the agents’ reinforcement learning 
objective, yielding a decentralized reinforcement learning algorithm 
for the Global MDP.
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Assumptions Key Idea
Assume the agents 𝜔$ know their valuations as 

𝑣$ 𝑠% = 𝑄∗ 𝑠% , 𝜔%$

Dominant strategy equilibrium in auction = solution to Global MDP
Pro: provable dominant strategy equilibrium
Con: assumes optimal Q-values are known

Define the optimal bid as the optimal Q value 𝑸∗ 𝒔𝒕, 𝝎𝒊 for 
activating agent 𝜔$ at state 𝑠%.

By defining the agents’ valuations 𝑣$(𝑠) as 𝑄∗ 𝑠, 𝜔$ , under the 
Vickrey auction it is a dominant strategy to truthfully bid 𝑄∗ 𝑠, 𝜔$ .

Assume the agents 𝜔$ know their valuations as 
𝑣$ 𝑠% = 𝑟 𝑠% , 𝜔%$ + 𝛾max

(
𝑏%&'(

Nash equilibrium in auction = solution to Global MDP
Pro: does not assume optimal Q-value is known
Con: assumes valuations are known

Temporally couple the agents in a market: An agent’s valuation of 
𝑠% is defined by how much it can sell the product 𝑠%&' of executing its 
transformation on 𝑠%.

Redundancy enforces credit conservation that helps avoid 
suboptimal equilibria.

Assume the agents 𝜔$ learn their valuations through interaction.

Nash equilibrium in auction = solution to Global MDP
Pro: does not assume valuations are known
Con: difficult to prove convergence to equilibrium

Define the auction utility as the agents’ reinforcement learning 
objective, yielding a decentralized reinforcement learning algorithm 
for the Global MDP.



Numerical Simulations
1. How closely do the bids the agents learn match their optimal Q-values?
2. Does the solution to the global objective emerge from the competition among the agents?
3. How does redundancy affect the solutions the agents converge to?
4. Does the modularity of such a decentralized system offer benefit in transferring to new tasks?
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𝜔!

𝜔#

𝜔$

𝜔%

Global Objective for the Society
Maximize reward

Local Objectives for the Agents
Maximize utility in the auction

Warm-Up: Bandit
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𝜔!
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Global Objective for the Society
Maximize reward

Local Objectives for the Agents
Maximize utility in the auction

Warm-Up: Bandit
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Warm-Up: Bandit
Does the solution to the global objective emerge 

from the competition among the agents?
How closely do the bids the agents learn 

match their optimal Q-values?
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Warm-Up: Bandit
Does the solution to the global objective emerge 

from the competition among the agents?
How closely do the bids the agents learn 
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Warm-Up: Bandit
Does the solution to the global objective emerge 

from the competition among the agents?
How closely do the bids the agents learn 

match their optimal Q-values?
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Warm-Up: Bandit
Does the solution to the global objective emerge 

from the competition among the agents?
How closely do the bids the agents learn 

match their optimal Q-values?
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𝑠" 𝑠# 𝑠$ 𝑠% 𝑠& 𝑠'

𝜔# 0 𝜔# 0 𝜔# 0 𝜔# 0 𝜔# +0.8

𝜔" 0 𝜔" 0 𝜔" 0 𝜔" 0

𝜔"

0

𝜔# 𝜔#!

“Right” “Right”

Global Objective for the Society
Maximize return

Local Objectives for the Agents
Maximize utility in the auction

𝜔! 𝜔!!

“Left” “Left”

Multi-Step MDP
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𝑠" 𝑠# 𝑠$ 𝑠% 𝑠& 𝑠'

Cloned Vickrey Auction

Multi-Step MDP
How closely do the bids the agents learn match their optimal Q-values?
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𝑠" 𝑠# 𝑠$ 𝑠% 𝑠& 𝑠'

First Price Auction Vickrey Auction Cloned Vickrey Auction

𝑠" 𝑠# 𝑠$ 𝑠% 𝑠& 𝑠'𝑠" 𝑠# 𝑠$ 𝑠% 𝑠& 𝑠'

Multi-Step MDP
How closely do the bids the agents learn match their optimal Q-values?
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Multi-Step MDP
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Continuing to Train on the Transfer Task
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Question Key Idea
What should the optimal bids be for the solution of the Global MDP 
to emerge?

Define the optimal bid as the optimal Q value 𝑸∗ 𝒔𝒕, 𝝎𝒊 for 
activating agent 𝜔$ at state 𝑠%.

For what auction mechanism would these optimal bids be an 
equilibrium strategy?

By defining the agents’ valuations 𝑣$(𝑠) as 𝑄∗ 𝑠, 𝜔$ , under the 
Vickrey auction it is a dominant strategy to truthfully bid 𝑄∗ 𝑠, 𝜔$ .

How can we adapt this auction mechanism for discrete-action MDPs? Temporally couple the agents in a market: An agent’s valuation of 
𝑠% is defined by how much it can sell the product 𝑠%&' of executing its 
transformation on 𝑠%.

How can we avoid suboptimal equilibria? Redundancy enforces credit conservation that helps avoid 
suboptimal equilibria.

How can we translate the auction mechanism into a decentralized 
reinforcement learning algorithm?

Define the auction utility as the agents’ reinforcement learning 
objective, yielding a decentralized reinforcement learning algorithm 
for the Global MDP.

https://sites.google.com/view/clonedvickreysociety

https://sites.google.com/view/clonedvickreysociety
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Question Key Idea
What should the optimal bids be for the solution of the Global MDP 
to emerge?

Define the optimal bid as the optimal Q value 𝑸∗ 𝒔𝒕, 𝝎𝒊 for 
activating agent 𝜔$ at state 𝑠%.

For what auction mechanism would these optimal bids be an 
equilibrium strategy?

By defining the agents’ valuations 𝑣$(𝑠) as 𝑄∗ 𝑠, 𝜔$ , under the 
Vickrey auction it is a dominant strategy to truthfully bid 𝑄∗ 𝑠, 𝜔$ .

How can we adapt this auction mechanism for discrete-action MDPs? Temporally couple the agents in a market: An agent’s valuation of 
𝑠% is defined by how much it can sell the product 𝑠%&' of executing its 
transformation on 𝑠%.

How can we avoid suboptimal equilibria? Redundancy enforces credit conservation that helps avoid 
suboptimal equilibria.

How can we translate the auction mechanism into a decentralized 
reinforcement learning algorithm?

Define the auction utility as the agents’ reinforcement learning 
objective, yielding a decentralized reinforcement learning algorithm 
for the Global MDP.

https://sites.google.com/view/clonedvickreysociety

Cloned Vickrey Society
A society of agents that implements global decision 

making via local economic transactions.

https://sites.google.com/view/clonedvickreysociety

