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Much Success So Far

A train carriage containing controlled nuclear materials was stolen in

Cincinnati today. Its whereabouts are unknown.

The incident occurred on the downtown train line, which runs from
Covington and Ashland stations.

In an email to Ohio news outlets, the U.S. Department of Energy said it
is working with the Federal Railroad Administration to find the thief.

“The theft of this nuclear material will have significant negative
consequences on public and environmental health, our workforce and the
economy of our nation,” said Tom Hicks, the U.S. Energy Secretary, in a
statement. “Our top priority is to secure the theft and ensure it
doesn’t happen again.”

The stolen material was taken from the University of Cincinnati’s
Research Triangle Park nuclear research site, according to a news
release from Department officials.
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Many local optimization problems Emergent global optimization problem
Many local agents Emergent global agent
Many local objectives Emergent global objective
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Optimization at Two Levels of Abstraction

Challenge

How can we build machine learning
algorithms that relate the global level of the
society and the local level of the agent?
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Environment
Implications

* Enable the design of learning algorithms
that are inherently modular

* Provide a recipe for engineering and
analyzing a multi-agent system to
achieve a desired global outcome
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Local Auction

Action Space: bids b Environment
Objective: optimize utility in auction
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Global MDP

Objective: optimize return in environment
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Local Auction Global MDP

Auction

Action Space: bids b T T Environment Action Space: agents w
Objective: optimize utility in auction W W w Objective: optimize return in environment
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This Paper: Contributions
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e Sequential decision making setting

* Each agent produces a specialized transformation
to the state (e.g. a literal action)

* Only one agent activates at each time step

Mechanism

Main Contribution

We show that the Vickrey Auction can be adapted to
MDPs such that the solution of the global societal
objective emerges as a Nash equilibrium strategy
profile of the local agents

Environment
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This Paper: Contributions

Assumptions

e Sequential decision making setting

* Each agent produces a specialized transformation
to the state (e.g. a literal action)

* Only one agent activates at each time step

Mechanism

Main Contribution

We show that the Vickrey Auction can be adapted to
MDPs such that the solution of the global societal
objective emerges as a Nash equilibrium strategy
profile of the local agents

Environment

Implication: Bridging Two Levels of Abstraction

* Arecipe for translating a global objective of a
society into local learning problems for the agents

* A decentralized reinforcement learning algorithm
with credit assignment local in space and time
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Activating Agents via Auction

Bidding Policy
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Transforming the State
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What should the optimal bids be?

Auction
Environment
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Key ldea: the optimal bid is your optimal Q value

w* = argmax Q*(s¢, w*)

Auction
Environment

o s
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Question

Key Idea

What should the optimal bids be for the solution of the Global MDP
to emerge?

Define the optimal bid as the optimal Q value Q*(s;, ") for
activating agent w' at state S¢-
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Roadmap

Question Key Idea
What should the optimal bids be for the solution of the Global MDP Define the optimal bid as the optimal Q value Q*(s;, ") for
to emerge? activating agent w' at state S¢-

For what auction mechanism would these optimal bids be an
equilibrium strategy?
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What Should the Auction Mechanism be?

Assume
Each agent w” has a valuation v*(s;) for state s,

Question
What should the agents’ utilities be?

First Price Sealed-Bid Auction Utilities?
Losers: ut(b) = 0
Winner: ut(b) = v* — b

Problem with First Price Sealed-Bid Auctions
There is no dominant strategy — the bid that
optimizes an agent’s utility depends on what
other agents bid
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Vickrey Auction

0 j
. PY(S;) — maxbh
( t) Jj*0 t

Bidding Policy

Loser

Assume
Each agent w” has a valuation v*(s;) for state s,

Question
What should the agents’ utilities be?

Vickrey Auction Utilities!
Losers: ut(b) = 0
Winner: ut(b) = v' — max b’
J#Fl
Want: Dominant Strategy Incentive Compatibility

The optimal strategy is to truthfully bid its own
valuation:

bt « pt

Implication: Set v*(s;) = Q*(s;, w*)!
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A Recipe for Relating Local and Global Objectives

N b? =v0(s) = Q*(St»wo)

‘ w* = argmax Q*(s¢, wk)

Fer. 0%(s,, 0°) — max b?
Q ( t ) j#0 t

-_—ee— e e e e e .

bi = v'(sy) = Q" (sp, ")

Environment

Implication: Set v*(s;) = Q*(s;, w*)!
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Roadmap

Question Key Idea
What should the optimal bids be for the solution of the Global MDP Define the optimal bid as the optimal Q value Q*(s;, ") for
to emerge? activating agent w' at state S¢-
For what auction mechanism would these optimal bids be an By defining the agents’ valuations vi(s) as Q*(s, a)i), under the

equilibrium strategy? Vickrey auction it is a dominant strategy to truthfully bid Q*(s, w?).



But walit...

Optimal Q values are usually unknown!
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Question Key Idea
What should the optimal bids be for the solution of the Global MDP Define the optimal bid as the optimal Q value Q*(s;, ") for
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For what auction mechanism would these optimal bids be an By defining the agents’ valuations vi(s) as Q*(s, a)i), under the
equilibrium strategy? Vickrey auction it is a dominant strategy to truthfully bid Q*(s, w?).

How can we adapt this auction mechanism for discrete-action MDPs?
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Key |ldea:

Let agents buy and sell states to each otherin a
market across time

An agent’s valuation of s; is defined by how much it can sell the
product s;, 1 of executing its transformation on s;
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Environment

Valuations

Before:

Vi(St) = Q*(Stwi)

CUO

Bidding Policy

Now:
vi(se) = T(St; (Ué) +y max b

Utilities
Winner’s utility

u'(b) = v' — max b’
j#i

Loser’s utility

Bidding Policy ui(b) —0

Bidding Policy
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Question

Key Idea

What should the optimal bids be for the solution of the Global MDP
to emerge?

For what auction mechanism would these optimal bids be an
equilibrium strategy?

How can we adapt this auction mechanism for discrete-action MDPs?

Define the optimal bid as the optimal Q value Q*(s;, ") for
activating agent w' at state S¢-

By defining the agents’ valuations v'(s) as Q*(s, '), under the
Vickrey auction it is a dominant strategy to truthfully bid Q*(s, w?).

Temporally couple the agents in a market: An agent’s valuation of
s; is defined by how much it can sell the product s;,, of executing its
transformation on s;.



Proposition: If the utilities are defined as below, it
is a Nash equilibrium for every primitive to bid
their optimal Q value in the Global MDP.

Valuations Utilities

Before: Winners:
vi(sy) = Q*(sp wf) ut(b) = lr(st, wi) + y max bfﬂ] — max b/
JF1

Now:
Losers:

vi(sy) = 1(sp k) + Y max b1 u'(b) =0



But walit...

Utility is not conserved!
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What should the optimal bids be for the solution of the Global MDP
to emerge?

For what auction mechanism would these optimal bids be an
equilibrium strategy?

How can we adapt this auction mechanism for discrete-action MDPs?

How can we avoid suboptimal equilibria?

Define the optimal bid as the optimal Q value Q*(s;, ") for
activating agent w' at state S¢-

By defining the agents’ valuations v'(s) as Q*(s, '), under the
Vickrey auction it is a dominant strategy to truthfully bid Q*(s, w?).

Temporally couple the agents in a market: An agent’s valuation of
s; is defined by how much it can sell the product s;,, of executing its
transformation on s;.
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w° is paid with the b, ;...

... which is equivalent to b}, ;, what w! pays



Main Result: Cloned Vickrey Society

Cloned Vickrey Society Utilities

Winners:

ut(b) = lr(st, wi) + y max bk, .

Vickrey Auction

7S~

’ l ’
wO wO (1)1 0)1 (1)2 (1)2

Environment

Losers:

ut(b) =0

— max bJ
J#1
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Theorem: In a Cloned Vickrey Society, it is a Nash
equilibrium for every primitive to bid their optimal
Q value in the Global MDP and utility is conserved.

Cloned Vickrey Society Utilities

Winners:
-

ut(b) = lr(st, wi) + y max béﬁrll — max b/
Jj#i
Environment Losers:

ut(b) =0

Vickrey Auction

TSN

! ! !
w® 0¥ o' ' w? w?
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Question

Key Idea

What should the optimal bids be for the solution of the Global MDP
to emerge?

For what auction mechanism would these optimal bids be an
equilibrium strategy?

How can we adapt this auction mechanism for discrete-action MDPs?

How can we avoid suboptimal equilibria?

How can we translate the auction mechanism into a decentralized
reinforcement learning algorithm?

Define the optimal bid as the optimal Q value Q*(s;, ") for
activating agent w' at state S¢-

By defining the agents’ valuations v'(s) as Q*(s, '), under the
Vickrey auction it is a dominant strategy to truthfully bid Q*(s, w?).

Temporally couple the agents in a market: An agent’s valuation of
s; is defined by how much it can sell the product s;,, of executing its
transformation on s;.

Redundancy enforces credit conservation that helps avoid
suboptimal equilibria.



From Equilibria to Learning Objectives

Each agent learns a bidding policy by optimizes their utility as reward:

Winners: Losers:

ul(b) = [r(se, w}) +y maxb¥,, | — max b/ ul(b) =0

J#i

Train bidding policies using standard reinforcement learning algorithms



Decentralized Reinforcement Learning

Each agent learns a bidding policy by optimizes their utility as reward:
Winners: Losers:

: : : iR —
ut(b) = lr(st, a),‘:) + y max bfﬂ] — 11]125 b’ u'(b) =0

Train bidding policies using standard reinforcement learning algorithms

Society: an emergent solution that is global in space and time

Agent: learns via credit assignment local in space and time
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Key Idea

What should the optimal bids be for the solution of the Global MDP
to emerge?

For what auction mechanism would these optimal bids be an
equilibrium strategy?

How can we adapt this auction mechanism for discrete-action MDPs?

How can we avoid suboptimal equilibria?

How can we translate the auction mechanism into a decentralized
reinforcement learning algorithm?

Define the optimal bid as the optimal Q value Q*(s;, ") for
activating agent w' at state S¢-

By defining the agents’ valuations v'(s) as Q*(s, '), under the
Vickrey auction it is a dominant strategy to truthfully bid Q*(s, w?).

Temporally couple the agents in a market: An agent’s valuation of
s; is defined by how much it can sell the product s;,, of executing its
transformation on s;.

Redundancy enforces credit conservation that helps avoid
suboptimal equilibria.

Define the auction utility as the agents’ reinforcement learning
objective, yielding a decentralized reinforcement learning algorithm
for the Global MDP.
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Ui(st) = Q*(Str wé)
Dominant strategy equilibrium in auction = solution to Global MDP

Con: assumes optimal Q-values are known
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Define the auction utility as the agents’ reinforcement learning
objective, yielding a decentralized reinforcement learning algorithm
for the Global MDP.
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Contributions

Assumptions

Key Idea

Assume the agents w' know their valuations as

Vi(St) = Q*(St: wé)

Dominant strategy equilibrium in auction = solution to Global MDP
Pro: provable dominant strategy equilibrium
Con: assumes optimal Q-values are known

Assume the agents w' know their valuations as
vi(se) = T(St; a)é) +y max b

Nash equilibrium in auction = solution to Global MDP
Pro: does not assume optimal Q-value is known
Con: assumes valuations are known

Assume the agents w' learn their valuations through interaction.
Nash equilibrium in auction = solution to Global MDP

Pro: does not assume valuations are known
Con: difficult to prove convergence to equilibrium

Define the optimal bid as the optimal Q value Q*(s;, ") for
activating agent w' at state S¢-

By defining the agents’ valuations v'(s) as Q*(s, '), under the
Vickrey auction it is a dominant strategy to truthfully bid Q*(s, w?).

Temporally couple the agents in a market: An agent’s valuation of
s; is defined by how much it can sell the product s;,, of executing its
transformation on s;.

Redundancy enforces credit conservation that helps avoid
suboptimal equilibria.

Define the auction utility as the agents’ reinforcement learning
objective, yielding a decentralized reinforcement learning algorithm
for the Global MDP.
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Numerica

1
2
3.
4

Simulations

How closely do the bids the agents learn match their optimal Q-values?
Does the solution to the global objective emerge from the competition among the agents?

How does redundancy affect the solutions the agents converge to?
Does the modularity of such a decentralized system offer benefit in transferring to new tasks?
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Warm-Up: Bandit




Warm-Up: Bandit

Reward 7(w?)

0.2 Global Objective for the Society
Maximize reward

0.4
Local Objectives for the Agents

Maximize utility in the auction
0.6

0.8

103



Warm-Up: Bandit

Reward 7(w?)

0.4
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0.8

Truthful Bid b°
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0.4
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0.8

Global Objective for the Society

Maximize reward

Local Objectives for the Agents

Maximize utility in the auction
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Mean Reward

Warm-Up: Bandit

Does the solution to the global objective emerge

from the competition among the agents?
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Mean Reward

Warm-Up: Bandit

Does the solution to the global objective emerge How closely do the bids the agents learn
from the competition among the agents? match their optimal Q-values?
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Mean Reward

Warm-Up: Bandit

Does the solution to the global objective emerge
from the competition among the agents?
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Mean Reward

Warm-Up: Bandit

Does the solution to the global objective emerge
from the competition among the agents?
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Multi-Step MDP

“Left”  “Left” “Right” “Right”
(0] Uy 1 4
Global Objective for the Society
) . | S Maximize return
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Maximize utility in the auction
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Multi-Step MDP

How closely do the bids the agents learn match their optimal Q-values?
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Multi-Step MDP

How closely do the bids the agents learn match their optimal Q-values?

Mean Bid
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How closely do the bids the agents learn match their optimal Q-values?

Mean Bid

Multi-Step MDP
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Multi-Step MDP

How closely do the bids the agents learn match their optimal Q-values?

Mean Bid
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Mean Bid

1.0

0.8

0.6

0.4

0.2 A

0.0

Multi-Step MDP

How closely do the bids the agents learn match their optimal Q-values?
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Multi-Step MDP

Mean Return
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Transfer

Pre-training Task Transfer Task
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Transfer

Optimal Policy for the Society

Pre-training Task Transfer Task



Transfer

Mean Return

Continuing to Train on the Transfer Task
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Contributions

Question

Key Idea

What should the optimal bids be for the solution of the Global MDP
to emerge?

For what auction mechanism would these optimal bids be an
equilibrium strategy?

How can we adapt this auction mechanism for discrete-action MDPs?

How can we avoid suboptimal equilibria?

How can we translate the auction mechanism into a decentralized
reinforcement learning algorithm?

Define the optimal bid as the optimal Q value Q*(s;, ") for
activating agent w' at state S¢-

By defining the agents’ valuations v'(s) as Q*(s, '), under the
Vickrey auction it is a dominant strategy to truthfully bid Q*(s, w?).

Temporally couple the agents in a market: An agent’s valuation of
s; is defined by how much it can sell the product s;,, of executing its
transformation on s;.

Redundancy enforces credit conservation that helps avoid
suboptimal equilibria.

Define the auction utility as the agents’ reinforcement learning
objective, yielding a decentralized reinforcement learning algorithm
for the Global MDP.

https://sites.google.com/view/clonedvickreysociety

119


https://sites.google.com/view/clonedvickreysociety

Contributions

Question

Cloned Vickrey Society

A society of agents that implements global decision
making via local economic transactions.

Key Idea

What should the optimal bids be for the solution of the Global MDP
to emerge?

For what auction mechanism would these optimal bids be an
equilibrium strategy?

How can we adapt this auction mechanism for discrete-action MDPs?

How can we avoid suboptimal equilibria?

How can we translate the auction mechanism into a decentralized
reinforcement learning algorithm?

Define the optimal bid as the optimal Q value Q*(s;, ") for
activating agent w' at state S¢-

By defining the agents’ valuations v'(s) as Q*(s, '), under the
Vickrey auction it is a dominant strategy to truthfully bid Q*(s, w?).

Temporally couple the agents in a market: An agent’s valuation of
s; is defined by how much it can sell the product s;,, of executing its
transformation on s;.

Redundancy enforces credit conservation that helps avoid
suboptimal equilibria.

Define the auction utility as the agents’ reinforcement learning
objective, yielding a decentralized reinforcement learning algorithm
for the Global MDP.

https://sites.google.com/view/clonedvickreysociety
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