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Motivation: detection of small clusters in large and noisy graphs

-Real large-scale graphs have rich local structure
-We often have to detect small clusters in large graphs:

Rather than partitioning graphs with  
nice structure

protein-protein interaction graph, 
color denotes similar functionality 

US-Senate graph,  
nice bi-partition in year 1865 around the end of  

the American civil war



Our goals: simple local algorithm with good theoretical guarantees

- run in time proportional to the size of the output (but not the whole graph), 

-supported by good theoretical guarantees, 

-require few tuning parameters.

Detection of small clusters in large graphs call for new methods that
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(Approximate Personalized) PageRank?

Our goals: simple local algorithm with good theoretical guarantees
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Graph cut or max-flow approach?

Our goals: simple local algorithm with good theoretical guarantees



- run in time proportional to the size of the output (but not the whole graph), 

-supported by good theoretical guarantees, 

-require few tuning parameters.

This work
Let’s replace PageRank with an even simpler model

Our goals: simple local algorithm with good theoretical guarantees



Existing local graph clustering methods 

e.g., Approx. PageRank 
[Andersen et al., 2006]

Spectral diffusions Combinatorial diffusions

based on the 
dynamics of 
random walks

based on the 
dynamics of 
network flows

e.g., Capacity Releasing 
Diffusion [Wang et al., 2017]



Diffusion as physical phenomenon

-paint spills, spreads, and settles
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Spectral diffusions leak mass

target cluster

starting node

-low precision 
- low recall



Combinatorial diffusions are hard to tune

-poor performance if not tuned well
-strong theoretical guarantees 
-work very well if tuned correctly



New local graph clustering paradigm

Spectral diffusions Combinatorial diffusions

p-Norm flow diffusions
based on the idea of 
p-norm network flow

-as fast as spectral methods 🙂 

-asymptotically as strong as combinatorial methods 🙂 

- intuitive interpretation, simple algorithm 🙂 

- fewer tuning parameters (than both spectral and combinatorial) 🙂



Notations and definitions

Incidence matrix B
a b c d e f g h

(a,b) 1 -1

(a,c) 1 -1

(b,c) 1 -1

(c,d) 1 -1

(d,e) 1 -1

(d,f) 1 -1

(d,g) 1 -1

(f,h) 1 -1
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-Ordering of edges and direction is arbitrary

-Undirected graph G = (V, E)

-B is signed incidence matrix where the row of edge  has two 
non-zero entries, -1 at column  and 1 at column 

|E | × |V | (u, v)
u v



Notations and definitions
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Δ

-  specifies initial mass 
on nodes.
Δ ∈ ℝ|V|

+

Δ(d) = 12
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Δ

-  specifies initial mass 
on nodes. 

-  specifies the amount of 
flow.

Δ ∈ ℝ|V|
+

f ∈ ℝ|E|

f(d,c) = 5 f(d,f ) = 1

Δ(d) = 12



Notations and definitions
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Δ
m(c) = 5 m(d) = 6

m( f ) = 1

-  specifies initial mass 
on nodes. 

-  specifies the amount of 
flow. 

-  specifies net 
mass on nodes.

Δ ∈ ℝ|V|
+

f ∈ ℝ|E|

m := B⊤f + Δ

Δ(d) = 12

f(d,c) = 5 f(d,f ) = 1



Notations and definitions
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-Each node v has capacity equal to its degree . 

-A flow  is feasible if .

d(v)

f [B⊤f + Δ](v) ≤ d(v), ∀v

-  specifies initial mass 
on nodes. 

-  specifies the amount of 
flow. 

-  specifies net 
mass on nodes.

Δ ∈ ℝ|V|
+

f ∈ ℝ|E|

m := B⊤f + Δ

m(c) = 5 m(d) = 6

m( f ) = 1



p-Norm flow diffusions - problem formulation

-We formulate diffusion process on graph as optimization:

-Out of all feasible flows  , we are interested in the one having minimum p-
norm, where .

f
p ∈ [2,∞)

minimize ∥f∥p

subject to:  B⊤f + Δ ≤ d
Nonlinear 🙂

Only one tuning parameter 🙂 



p-Norm flow diffusions - problem formulation

-Versatility: different p-norm flows explore different structures in a graph 

-Locality: ∥f*∥0 ≤ |Δ | := ∑v∈V
Δ(v)

minimize ∥f∥p

subject to:  B⊤f + Δ ≤ d

-We formulate diffusion process on graph as optimization:



p-Norm flow diffusions - problem formulation

minimize ∥f∥p

subject to:  B⊤f + Δ ≤ d

-We formulate diffusion process on graph as optimization:

-The dual problem provides node embeddings

-Obtain a cluster by applying sweep cut on  x

minimize x⊤(d − Δ)
subject to:  ∥Bx∥q ≤ 1

x ≥ 0

Biased towards 
seed node

1/p + 1/q = 1



p-Norm flow diffusions - local clustering guarantees

-Conductance of target cluster C

-Seed set .S := supp(Δ)

-The output cluster  satisfiesC̃

-Cheeger-type bound  for  

-Constant approximate  for 

ϕ(C̃) ≤ 𝒪̃( ϕ(C)) p = 2

ϕ(C̃) ≤ 𝒪̃(ϕ(C)) p → ∞

ϕ(C) = |{(u, v) ∈ E : u ∈ C, v ∉ C} |
min {vol(C), vol(V∖C)}

where  vol(C) := ∑v∈C
d(v)

vol(S ∩ C) ≥ βvol(S)
vol(S ∩ C) ≥ αvol(C)

α, β ≥
1

logt vol(C)
for some t-Assumption (sufficient overlap):

ϕ(C̃) ≤ 𝒪̃(ϕ(C)1−1/p)



p-Norm flow diffusions - local clustering guarantees

-Conductance of target cluster C

-Seed set .S := supp(Δ)

-The output cluster  satisfiesC̃

-Cheeger-type bound  for  

-Constant approximate  for 

ϕ(C̃) ≤ 𝒪̃( ϕ(C)) p = 2

ϕ(C̃) ≤ 𝒪̃(ϕ(C)) p → ∞

ϕ(C) = |{(u, v) ∈ E : u ∈ C, v ∉ C} |
min {vol(C), vol(V∖C)}

where  vol(C) := ∑v∈C
d(v)

ϕ(C̃) ≤ 𝒪̃(ϕ(C)1−1/p)
Proof based on analysis of primal 
and dual objective and constraints.

Larger p penalizes more on the 
flows that cross “bottleneck” 
edges, leading to less leakage.

vol(S ∩ C) ≥ βvol(S)
vol(S ∩ C) ≥ αvol(C)

α, β ≥
1

logt vol(C)
for some t-Assumption (sufficient overlap):



p-Norm flow diffusions - simple strongly local algorithm

-Solve an equivalent penalized dual formulation by a variant of 
randomized coordinate descent.

Initially each node has a net mass equals the initial mass.
Iterate:
    Pick a node v whose net mass exceeds its capacity.
    Send excess mass to its neighbors.
    Update net mass.



p-Norm flow diffusions - simple strongly local algorithm

-Solve an equivalent penalized dual formulation by a variant of 
randomized coordinate descent.

-Worst-case running time .𝒪 ( |Δ |( |Δ |
ϵ )2/q−1 log 1

ϵ )

Initially each node has a net mass equals the initial mass.
Iterate:
    Pick a node v whose net mass exceeds its capacity.
    Send excess mass to its neighbors.
    Update net mass.

Total amount of initial mass
-Linear convergence when q = 2.

Natural tradeoff between 
speed and robustness to noise



p-Norm flow diffusions - empirical performance

-LFR synthetic model 
-  is a parameter that controls noise, the higher the more noise.μ
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p-Norm flow diffusions - empirical performance

- Facebook social network for Colgate University, students in Class of 2009
PageRank p = 2 p = 4

Conductance 0.13 0.13 0.12
F1 measure 0.96 0.96 0.97

- Facebook social network for Johns Hopkins University, students of the same major
PageRank p = 2 p = 4

Conductance 0.25 0.23 0.22
F1 measure 0.83 0.85 0.87

PageRank p = 2 p = 4
Conductance 0.37 0.35 0.33
F1 measure 0.66 0.71 0.73

- Orkut, large-scale on-line social network, user-defined group

very clean
ground

truth

average
ground

truth

very noisy
ground

truth



Local  
running time,  

fast computation

Good  
theoretical 
guarantee

Simple algorithm, 
less tuning

Spectral diffusion 
(e.g. PageRank)

Combinatorial diffusion
(e.g. CRD)

p-Norm flow diffusion

Julia implementation: pNormFlowDiffusion on GitHub 

- Includes demonstrations and visualizations on LFR and Facebook 
social networks. 

-Contains all code to reproduce the results in our paper.



Thank you!


