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Motivation
1. Task-imbalanced Meta Learning
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Motivation
2.  Data-driven Algorithm Design
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Traditional algorithms have certain stop criteria to determine the number of iterations for each problem. 
E.g., 
• iterate until convergence
• early stopping to avoid over-fitting 

Deep learning based algorithms usually have a fixed number of iterations in the architecture.
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Motivation
3.  Others

Image Denoising 
• Images with different noise levels may need different number of denoising steps.

Image Recognition
• ‘early exits’ is proposed to improve the computation efficiency and avoid ‘over-thinking’.

[Teerapittayanon et al., 2016; Zamir et al., 2017; Huang et al., 2018, Kaya et al. (2019)]

noisy less noisy

5-minute Core Message



Predictive Model with Stopping Policy
Predictive model 𝓕𝜽
• Transforms the input 𝒙 to generate a path of states 𝒙,, … , 𝒙6
Stopping Policy 𝝅𝝓
• Sequentially observes the states 𝒙( and determines the probability of stop at layer 𝑡
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predictive
model

stop
policy

Variational stop time distribution 𝒒𝝓
• Stop time distribution induced by stopping policy 𝝅𝝓

𝒒𝝓 𝑡 = 𝜋=(𝑥()∏BC,
(D,(1 − 𝜋=(𝑥B)variational stop time

distribution



How to learn the optimal (𝓕𝜽, 𝝅𝝓) efficiently?
• Design a joint training objective:

ℒ(𝓕𝜽, 𝒒𝝓)
• Introduce an oracle stop time distribution:

𝒒∗|𝓕𝜽:= argmin𝒒∈QRST ℒ(𝓕𝜽, 𝒒)

• Then we decompose the learning procedure into two stages:

(ii)    The imitation learning stage (i) The oracle model learning stage
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𝑞∗|ℱ𝜽ℱ𝜽
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KL divergence

optimal 𝒒𝝓∗

𝑞∗|ℱ𝜽∗ 𝒒𝝓
oracle oracle



Advantages of our training procedure
5-minute Core Message

ü Principled
• Two components are optimized towards a joint objective.

ü Tuning-free
• Weights of different layers in the loss are given by the oracle distribution automatically.

• For different input samples, the weights on the layers can be different. 

ü Efficient
• Instead of updating 𝜃 and 𝜙 alternatively, 𝜽 is optimized in 1st stage, and then 𝜙 is optimized in 2nd stage.

ü Generic
• can be applied to a diverse range of applications.

ü Better understanding
• A variational Bayes perspective, for better understanding the proposed model and joint training.

• A reinforcement learning perspective, for better understanding the learning of the stop policy.



Experiments
5-minute Core Message

l Learning to optimize: sparse recovery
l Task-imbalanced meta learning: few-shot learning
l Image denoising
l Some observations on image recognition tasks.



Problem Formulation - Models
Predictive model 𝓕𝜽
• 𝒙( = 𝑓/Y(𝒙(D,), for 𝑡 = 1,2, … , 𝑇

Stopping Policy 𝝅𝝓
• 𝜋( = 𝜋= 𝒙, 𝒙( , for 𝑡 = 1,2, … , 𝑇

Variational stop time distribution 𝒒𝝓 (induced by 𝝅𝝓)

• 𝑞= 𝑡 = 𝜋( ∏BC,
(D,(1 − 𝜋B) for 𝑡 < 𝑇

Pr[not stopped before t]

• Help design the training objective and the algorithm.



Problem Formulation – Optimization Objective

ℒ ℱ/, 𝑞=; 𝑥, 𝑦 = 𝔼(∼ab𝑙 𝑦, 𝑥(; 𝜃 − 𝛽𝐻 𝑞=
entropyloss in 

expectation over 𝑡

• Variational Bayes Perspective

min
/,=

ℒ ℱ/, 𝑞=; 𝑥, 𝑦 equivalent max
/,=

𝒥hDijk ℱ/, 𝑞=; 𝑥, 𝑦

(i.e., 𝛽-VAE, ELBO)



Training Algorithm – Stage I
Oracle stop time distribution:

𝑞/∗ ⋅ 𝑦, 𝑥 ≔ argmax
𝒒∈QRST

𝒥hDijk ℱ/, 𝒒; 𝑥, 𝑦

=
𝑝/ 𝑦 𝑡, 𝑥 ,/h

∑(C,6 𝑝/ 𝑦 𝑡, 𝑥 ,/h

Interpretation:
• It is the optimal stop time distribution given a predictive model ℱ/
• When 𝛽 = 1, the oracle is the true posterior, 𝑞/∗ 𝑡 𝑦, 𝑥 = 𝑝/ 𝑡 𝑦, 𝑥
• This posterior is computationally tractable, but it requires the 

knowledge of the true label 𝑦.

Stage I. Oracle model learning

max
/

1
|𝒟| r

(s,t)∈𝒟

𝒥hDijk 𝓕𝜽, 𝒒𝜽∗ ; 𝑥, 𝑦 = max
/

1
|𝒟| r

(s,t)∈𝒟

r
(C,

6

𝒒𝜽∗ 𝑡 𝑦, 𝑥 log 𝒑𝜽(𝒚|𝒕, 𝒙)

likelihood of the
output at 𝑡-th layer



Training Algorithm – Stage II

Stage II. Imitation With Sequential Policy

Recall:  Variational stop time distribution 𝒒𝝓 𝑡|𝑥 induced by the sequential policy 𝝅𝝓
Hope:   𝒒𝝓 𝑡|𝑥 can mimic the oracle distribution 𝒒𝜽∗∗ (𝑡|𝑦, 𝑥), by optimizing the forward KL divergence: 

KL(𝑞/∗
∗ | 𝑞= = −r

(C,

6

𝑞/∗
∗ 𝑡 𝑦, 𝑥 log 𝑞= 𝑡 𝑥 − 𝐻(𝑞/∗

∗ )

Note: If we use reverse KL divergence, then it is equivalent to solving maximum-entropy RL.

forward KL divergence



Experiment I - Learning To Optimize: Sparse Recovery

• Task: Recover 𝑥∗ from its noisy measurements 𝑏 = 𝐴𝑥∗ + 𝜖

• Traditional Approach:

– LASSO formulation min
�
½||𝑏 − 𝐴𝑥||-- + 𝜌||𝑥||,

– Solved by iterative algorithms such as ISTA

• Learning-based Algorithm:

– Learned ISTA (LISTA) is a deep architecture designed 

based on ISTA update steps

• Ablation study: Whether LISTA with adaptive depth (LISTA-stop) 

is better than LISTA.



Experiment II – Task-imbalanced Meta Learning
• Task: Task-imbalanced few-shot learning. Each task contains k-shots for each class where k can vary.

• Our variant, MAML-stop:

– Built on top of MAML, but MAML-stop learns how many adaptation gradient descent steps are 
needed for each task.

Task-imbalanced setting:

Vanilla setting:



Experiment III – Image Denoising
• Our variant, DnCNN-stop:

– Built on top of one of the most popular models, DnCNN, for the denoising task.

*Noise-level 65, 75 are not observed during training.


