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Motivation

Questions:

Can we realize a deterministic autoencoder to learn discrete latent
space with a competitive performance?

How to sample from latent space?

How to interpolate between given samples in this latent space?

Can we modify sample attributes in the latent space and how?

What are the simplest possible solutions to the above?

Why discrete representations?

Gating, hard attention, memory addressing

Compact representation for storage, compression

Encoding for energy models such as Hopfield memory[1] or HTM[2]

Interpretability
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Latent Bernoulli Autoencoder LBAE

We propose a simple, deterministic encoder-decoder model that learns
multivariate Bernoulli distribution in the latent space by binarization
of continuous activations

For N-dimensional latent space the information bottleneck of a
typical autoencoder is in LBAE replaced with tanh() followed by
binarization fb() ∈ {−1, 1}N with unit gradient surrogate function
fs() for backward pass
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Figure: Black forward pass, yellow backward pass

Jiri Fajtl et al. LBAE - ICML 2020 August 15, 2020 3 / 29



Sampling From the Bernoulli Distribution

Without enforcing any prior on the latent space the learned
distribution is unknown

We parametrize the distribution by its first two moments learned from
latents encoded on the training data

Dimensions of the binary latent space are relaxed into vectors on a
unit hypersphere given the first two moments

A random Bernoulli vector with the distribution of the latent space is
generated by randomly splitting the hypersphere and assigning logical
ones to latent dimensions represented by vectors in one hemisphere
and zeros to the rest (encoded as {−1, 1})

r ∼ 𝓝(N+1)(0, I(N+1))
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Interpolation in Latent Space
Given latent representations of two images, generate latents
producing interpolation in the image space
For source and target latents we find hyperplanes on the hypersphere
Divide the angle between source and target hyperplane normals into
T steps and for each produce a new hyperplane
Decode these hyperplanes into latents and then to images

  Enc.   Latent -> Hyperplane 

  Enc.  Latent -> Hyperplane 
 Dec.

source

target

  Latent <- Hyperplane 
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Changing Attributes

Statistically significant attributes of the training data can be
identified in the latent space e.g. images of faces with eyeglasses

No need to train the LBAE in a conditional setting

Collect latents of samples with the given attribute and find highly
positively and negatively correlated latent bits

The attribute is then modified by changing these bits in the latent
vector

1-11 -1

-1 -11 1-11 1 1-1 -1 11 -1-11 -1 1-1

Set eyeglasses attribute bits

Enc. Dec.
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Results
Reconstruction on test datasets

Random Samples

Interpolation on test datasets

Adding eyeglasses and goatee CelebA attributes on test dataset

Quantitative Results at the end of the presentation
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Deep Dive

Learning Bernoulli latent space

Sampling correlated multivariate Bernoulli latents

Interpolation in latent space

Changing sample attributes

Quantitative & qualitative results

Conclusion
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Learning Bernoulli Latent Space

Problematic with grandient based methods , not differentiable - no
backprop

Leave non differentiable binarization fcn in the forward pass and
bypass it during backprop. Proposed earlier by Hinton & Bengio.

But the convergence is slow or impossible without limiting the
magnitude of the error gradient in the encoder

Limiting the activation to [−1, 1] with tanh() alleviates this issue
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Learning Bernoulli Latent Space

For N-dimensional latent space we replace the information bottleneck
of a typical autoencoder with tanh() followed by binarization
fb(zi ) = {1, if zi ≥ 0 and − 1 otherwise} with unit gradient surrogate
function fs() for backward pass
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We found lower overfitting with the binarization compared to an
identical AE with similar bit-size continuous latents

Quantization noise helps with regularisation
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Latent Space Representation

Without enforcing any prior on the latent space the learned
distribution is unknown

How to parametrize the latent distribution? GMM, KDE,
autoregressive models, ...?

Marginal Bernoulli distribution has a limit on information carried by
single dimension given by its unimodal distribution with expectation
p = E[b]

Most information is carried by higher moments

We parametrize the latent distribution by its first and second
non-central moments learned from latents encoded on the training
dataset

Our method is based on random hyperplane rounding proposed by
Goemans-Williamson for the MAX-CUT [3] algorithm
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Latent Space Representation

Relax latent dimensions into unit vectors on a hypersphere

Set angles between the vectors to be proportional to covariances of
corresponding latent dimensions

Add a boundary vector (yellow) representing the expected value of
the distribution

1 -1 -1-1-1 1 …...1 1 1-1 b
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Latent Space Parametrization

Let us consider a matrix Y ∈ {−1, 1}(N×K) of K N-dimensional
latents encoded on the training dataset

Parametrize the latent space distribution by first two moments as:

M =

[
E[YYT] E[Y]

E[Y]T 1

]
,M ∈ [−1, 1](N+1)×(N+1)

Generate N + 1 unit length vectors on a sphere S (N+1) organized as
rows in matrix V ∈ R(N+1)×(N+1),∀i ∈ [1, ..,N + 1], ‖Vi‖ = 1

Setup angles αi ,j between pair of vectors (Vi ,Vj) as:
I αi,j −→ 0 for high positive covariance
I αi,j −→ π for high negative covariance
I αi,j ≈ π

2 for independent dimensions
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Latent Space Parametrization

Relate covariances in M to the angle αi ,j and scalar product 〈Vi ,Vj〉

1

2
(Mi ,j + 1) = 1−

αi ,j

π
= 1−

cos−1(〈Vi ,Vj〉)
π

Get V as a function of M

Hi ,j = cos
(π

2
(1−Mi ,j)

)
where H is a Gram matrix Hi ,j = 〈Vi ,Vj〉

H = VVT s.t. H < 0,

where V is a row-normal lower triangular matrix after Cholesky
decomposition with rows being the desired unit vectors on S (N+1).

Jiri Fajtl et al. LBAE - ICML 2020 August 15, 2020 14 / 29



Sampling Correlated Multivariate Bernoulli Latents

Generate random hyperplane through the center of S (N+1) (green)

r ∼ N(N+1)(0, I(N+1))

Set positive states (red) to dimensions represented by vectors in
hemisphere shared by the boundary vector VN+1 (yellow) and
negative to the rest

bi =

{
1, if fb(〈Vi , r〉) = fb(〈V(N+1), r〉)
−1, otherwise

,∀i ∈ [1, ..,N]
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Sampling Correlated Multivariate Bernoulli Latents
Why not sample from multivariate normal distributions with rounding?

Σ = E[YYT]−E[Y]E[Y]T , z ∼ NN(0, IN)

b = fb(Lz+E[Y]), b ∈ {−1, 1}N ,

where Σ = LLT is a lower triangular Cholesky decomposition.
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(b) Vectorized, sorted covariances.

Ground truth (GT) vs LBAE sampling vs normal dist. sampling. GT and LBAE
sampling appear identical. Note that GT (blue) is mostly hidden behind the red.
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Interpolation in Bernoulli Latent Space

Encode source and target images to latents s and t

For each find a hyperplane rs and rt that generates original latents

Get T equally spaced vectors ri , i ∈ [1, ...,T ] between rs and rt
For each hyperplane with normal ri generate a latent and decode it to
an image

  Enc.   Latent -> Hyperplane 

  Enc.  Latent -> Hyperplane 
 Dec.

source

target

  Latent <- Hyperplane 
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Interpolation - Latent to Hyperplane Inversion

The hyperplane position on S (N+1) for any given latent is not unique

Hyperplane with a least square fit between positive and negative
states is degenerated in some sense

Interpolation between such hyperplanes produces exact copies of the
source latent till the midpoint where it instantly flips to the target.

We find the hyperplane normal for a given latent as a line through the
center, closest to the centroids of its positive and negative state
vectors in V
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Interpolation - Latent to Hyperplane Inversion

Hamming distance of the latents interpolated by our method changes almost
linearly between the source and target.
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(a) MNIST
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(b) CIFAR10 (CelebA is similar)

µ and σ of Hamming distances between interpolated latent at step k and source
and target latents over 1k interpolations. Distances are normalized by the
source-target distance.
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Changing Attributes

A simple method, no need to train the LBAE in a conditional setting

Collect K latents Ya ∈ {−1, 1}(N×K) with the attribute a

Get p = E[Ya],p ∈ RN

To change the attribute a in an image represented by latent b set its
bits bi as such:

bi =


1, if pi > D

−1, if pi < −D
bi , otherwise.

Threshold D determines how many bits will be modified

Experimentally we found that D = 0.1 provides satisfactory results
and set this value for all our experiments.

1-11 -1

-1 -11 1-11 1 1-1 -1 11 -1-11 -1 1-1

Set eyeglasses attribute bits

Enc. Dec.
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Quantitative Results

Evaluated by FID[4], KID[5] and Precision/Recall[6] metrics with
reference implementations123

To compute FID and KID we use 10k reference and evaluation images

FID scores (lower is better)

MNIST CIFAR-10 CelebA
Reco. Gen. Int. Reco. Gen. Int. Reco. Gen. Int.

VAE [7] 18.26 19.21 18.21 57.94 106.37 88.62 39.12 48.12 44.49
WAE-MMD [7] 10.03 20.42 14.34 35.97 117.44 76.89 34.81 53.67 40.93
RAE-L2 [7] 10.53 22.22 14.54 32.24 80.8 62.54 43.52 51.13 45.98
VPGA [8] 11.67 51.51 24.73
LBAE 8.11 11.36 9.8 19.37 53.55 34.41 7.71 34.95 14.87

Note that VPGA on CelebA almost entirely crop out the background,
including parts of faces, which simplifies the underlying statistic.

1https://github.com/bioinf-jku/TTUR
2https://github.com/mbinkowski/MMD-GAN
3https://github.com/msmsajjadi/precision-recall-distributions
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Quantitative Results
Precision/Recall (higher is better)

MNIST CIFAR-10 CelebA
VAE [7] 0.96 / 0.92 0.25 / 0.55 0.54 / 0.66
WAE-MMD [7] 0.93 / 0.88 0.38 / 0.68 0.59 / 0.68
RAE-L2 [7] 0.92 / 0.87 0.41 / 0.77 0.36 / 0.64
LBAE 0.92 / 0.97 0.66 / 0.87 0.73 / 0.82

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

VAE

LBAE N (µ,Σ)

(0, I)LBAE N

(a) MNIST

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

VAE

LBAE N (µ,Σ)

(0, I)LBAE N

(b) CIFAR-10

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

VAE

LBAE  N(µ,Σ)

(0, I)LBAE  N

(c) CelebA

High precision and recall of LBAE signifies that the generated images
represent the entire distribution and that their quality is close to the
reference distribution.
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Reconstruction & Random Samples

Reconstruction on test datasets

Random Samples
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Interpolation
Interpolation on test datasets
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Attributes Modification
Interpolation between CelebA test images (left) and the same images
(right) with modified attributes (test dataset)

(a) Setting eyeglasses attribute.

(b) Setting goatee attribute.

More results in the supplemental material.
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Conclusions

We show that a simple deterministic, discrete latent autoencoder,
trained with the straight-through estimator performs on a par with
the current state of the art methods on common benchmarks CelebA,
CIFAR-10 and MNIST

We propose a closed form method for sampling from the Bernoulli
latent space and a method for interpolation and attribute
modification in this space

Out method produces sharper images compared to VAE

Does not suffer from mode collapse

To our knowledge it is the first successful method that directly learns
binary representations of images and allows for smooth interpolation
in the discrete latent space
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Thank You!

Contact: J.Fajtl@kingston.ac.uk
Paper & code: https://github.com/ok1zjf/lbae/
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