
FORMULA ZERO
Aman Sinha*, Matthew O’Kelly*, Hongrui Zheng*, Rahul Mangharam, John Duchi, Russ Tedrake

Distributionally Robust Online Adaptation via Offline Population Synthesis

Image: James Gilleard

Overview
Population Synthesis

Online Adaptation

Experiments

Balancing Performance and Safety

Current AV technology still struggles in
non-cooperative scenarios like merging due to
competing objectives:

● Maximize performance: negotiate the
merge without delay or hesitation

● Maintain safety: avoid catastrophic failures
and crashes

Racing (autonomously) highlights this performance
safety tradeoff.

Videos: Mobileye and Formula 1

Autonomous Racing

In autonomous racing, the ego-agent must lap
a racetrack in the presence of other agents
deploying unknown policies.

The agent wins by:

● Completing the race first
● Crashing automatically results in a loss

Our simulation and hardware platform is
open-source: https://f1tenth.org

http://www.youtube.com/watch?v=7Yat9FZzE4g
https://f1tenth.org

Challenges of Autonomous Racing

Crashing is expensive and dangerous

Image: Formula 1

Sensor observations do not uniquely determine the opponent’s behavior

Challenges of Autonomous Racing

Strategies are secret

Image: Mercedes Benz AMG Petronas

Robust Reinforcement Learning

● We capture uncertainty in the behaviors of other agents through an ambiguity
set,

● A larger ambiguity set, , ensures a greater degree of safety while
sacrificing performance against a particular opponent

● Two challenges: learning a offline (without expert demonstrations) and
adjusting online.

If we knew the opponent’s behavior
we wouldn’t need an ambiguity set

Population Synthesis

Parameterized Policy:
1. Goal Generator: Inverse

Autoregressive Flow weights
2. Goal Evaluator:

non-differentiable cost
function weights

(Kingma et al 17)

Population Synthesis

Parameterized Policy:
1. Goal Generator: Inverse

Autoregressive Flow weights
2. Goal Evaluator:

non-differentiable cost
function weights

Population Synthesis:
1. Highly-scalable population-based

MCMC solution
2. Uses self-play to generate

competitive agents

(Marinari & Parisi 92)

Population Synthesis

Parameterized Policy:
1. Goal Generator: Inverse

Autoregressive Flow weights
2. Goal Evaluator:

non-differentiable cost
function weights

Population Synthesis:
1. Highly-scalable population-based

MCMC solution
2. Uses self-play to generate

competitive agents

Opponent Prototypes:
1. Elite members of population

are described by their policy
parameters

2. A diverse subset is selected for
online use

(Kulesza et al 12)

Sensor Measurements

Online Adaptation

Sensor Measurements

Opponent Prediction

(Lattimore & Szepesvari 20, Papamakarios et al 17)

Masked Autoregressive Flow

Online Adaptation

Online Adaptation

(Kingma et al 17)

Sensor Measurements

Opponent Prediction

Masked Autoregressive Flow

Inverse Autoregressive Flow

Motion Planner Goals

Sensor Measurements

Distributionally Robust Optimization

Masked Autoregressive Flow

Inverse Autoregressive Flow

(Namkoong & Duchi 17)

Online Adaptation Opponent Prediction

Motion Planner Goals

Sensor Measurements

Control

Distributionally Robust Optimization

Opponent Prediction

Motion Planner Goals

Masked Autoregressive Flow

Inverse Autoregressive Flow

Related Work

● Robust RL/control
○ Robust MDP (Nilim, El Ghaoui 05)
○ POMDP (Kaelbling et al 98)
○ Adversarial RL (Pinto et al 17, Mandlekar et al 17)

●
● Belief-space planning (Kochenderfer 15, Galceran et al 15, Van Den Berg et al 11)

● DRO (Ben-Tal et al 13, Namkoong & Duchi 17)

● Bandits (Lattimore & Szepesvari 20)

● Quality-diversity algorithms (Mouret & Clune 15)

● Simulated tempering (Marinari & Parisi 92)

Overview

Population Synthesis
Online Adaptation

Experiments

In our AV application, θ parametrizes a neural network used to sample trajectories to follow, x is a
weighting of various cost functions that the vehicle uses to select trajectories from the samples, and
is the simulated lap time.

Population Synthesis
The goal of offline population synthesis is to generate a diverse set of competitive agent behaviors.

Step 1: Initialize Populations

● Builds off of a concept known in
MCMC literature as parallel
tempering (Marinari & Parisi 92)

● Initialize several “baths” of
configurations that are
composed of both differentiable
and non-differentiable
parameters

● Unlike parallel tempering we
maintain populations at each
level

Only accepts changes
to configurations which
improve performance

Accepts any configuration
change regardless of
performance

Step 2: Vertical MCMC Exploration

● In the vertical phase of the
algorithm we explore the space of
non-differentiable parameters using
MCMC.

● Each proposal is evaluated by a
race simulation between the
perturbed configuration and the
previous configuration.

● Proposals are accepted according
to the standard MH criteria.

MCMC steps, Hit & Run
proposals + MH
acceptance criteria

Simulations happen
asynchronously in
parallel

Step 3: SGD Parameter Update

● Run SGD updates on differentiable
parameters (e.g. MAF/IAF network
parameters).

● The objective is to maximizes the
likelihood of the trajectories chosen
by the agent with cost functions
parametrized by .

No new simulation calls, utilize
buffer from the vertical steps.

Step 4: Horizontal MCMC Tempering

● Horizontal proposals consist of
swapping two configurations in
adjacent temperature levels
uniformly at random

● The proposal is accepted using
standard Metropolis-Hastings (MH)
criteria

● This procedure is especially
efficient because it doesn’t require
new simulations. Poorly performing

configurations are
demoted with
high-probability.

High-performing
configurations are
promoted with
high-probability

Step 5: Temperature Updates

● Anneal horizontal swap acceptance
probability in order to automatically
adjust temperature levels.

● This adaptive scheme is crucial in
our problem setting, where we a
priori have no knowledge of
appropriate scales for f and, as a
result, β.

End Result: Population of Opponent Prototypes

When racing against a particular opponent, the agent maintains a belief vector w(t) of the opponent’s behavior
patterns as a categorical distribution over these prototype behaviors. We then parametrize the ambiguity set as a
ball around this nominal belief w(t).

Overview

Population Synthesis

Online Adaptation
Experiments

Distributionally Robust Trajectory Cost

We will investigate how the ego-agent will choose its actions taking into account
the opponent behaviors.

Motion Planner Goals Opponent Predictions Plan

Distributionally Robust Trajectory Cost

Distributionally Robust Trajectory Cost

Distributionally Robust Trajectory Cost

Distributionally Robust Trajectory Cost

Distributionally Robust Trajectory Cost

We repeat this for every motion planning goal, and select the goal with the lowest
robust cost.

If there are 10 possible opponents and 100 possible motion planning goals we
will need to compute 1000 receding horizon costs just to setup the problem!

Efficient Approximation of the Robust Cost
● Challenge: what happens when there are many possible opponents?
● At each time step we sample N<d opponent prototypes
● Beliefs begin as a uniform distribution

T=t

Select opponent 1,5, and 3… and compute:

Efficient Approximation of the Robust Cost

Select opponent 1,5, and 3… and compute:

T=t

Proposition 1 shows we can bound the approximation quality, see the paper for
details:

Online Adaptation

T=h T=h+1 T=h+2

At each timestep, compute likelihood that the real trajectory was generated by
prototype i:

Online Adaptation

T=h T=h+1 T=h+2

Then we can construct an unbiased estimate of subgradient:

Online Adaptation

T=t+1

Update the belief vector using modified EXP3 (Auer et al 2002):

T=h T=h+1 T=h+2

Online Adaptation

T=t+1

With the following regret bound:

T=h T=h+1 T=h+2

Overview

Population Synthesis

Online Adaptation

Experiments

Hardware

Population synthesis results

Decrease in average race times over the course of training.

Lower is better!

Illustrations of diversity

Diversity in performing a lap
in isolation (no opponents)

Diversity in maneuvering near
an opponent

Regret for opponent identification

In simulation we can identify
the opponent model with
only ~150 observations

In the real-world we also
correctly identify the opponent,
but it takes longer...

Balancing safety and performance
By actively identifying the opponent’s strategy can we regain the performance of
aggressive strategies without the downside of compromised safety?

The larger the
robustness-ball
the less frequently
the agent
experiences low
time-to-collision
events

Balancing safety and performance
By actively identifying the opponent’s strategy can we regain the performance of
aggressive strategies without the downside of compromised safety?

Larger
robustness-balls
without adaptivity
significantly reduce
win-rate

Balancing safety and performance
By actively identifying the opponent’s strategy we can regain the performance of
aggressive strategies without the downside of compromised safety.

Online adaptivity
preserves win
rate even when
the requested
robustness level
is high

Balancing safety and performance
By actively identifying the opponent’s strategy we can regain the performance of
aggressive strategies without the downside of compromised safety.

Online adaptivity
preserves win
rate even when
the requested
robustness level
is high

Putting it all together on a real racecar

http://www.youtube.com/watch?v=7Yat9FZzE4g&t=52

