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● Given a trial T={x1, x2}, decide whether the underlying classes are the same (target trial) 
or not (non-target trial)
○ Trial: a pair of examples (or a pair of sets of examples)

● Two settings:
○ Closed-set:

■ Same classes at train and test time
○ Open-set:

■ New classes at test time

● Popular instances:
○ Biometrics
○ Forensics
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Verification Reject

Accept

Non-target

Target

Xenroll , xtest

Claimed 
Class , xtest

Type I trial:

Type II trial:

● Type I trials:
○ Enrollment set + test example

● Type II trials:
○ Claimed class + test example
○ Closed-set only
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● H0: Target trials (same classes)

● H1: Non-target trials (different classes)

● Decision rule: Compare the likelihood ratio (LR) with a threshold

● Generative approaches approximate both terms in LR
○ Very often employing complex pipelines
○ Some attempts towards end-to-end settings in recent literature
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● Represent data in a metric space where distances indicate semantic relationships

○ Distance metric learning: learn how to assess similarity/distance

■ E.g., Mahalanobis distance learning  (Xing et al. 2003): 

○ Metric learning: learn an encoding process instead

■ E.g., Siamese nets (Bromley et al. 1994, Chopra et al. 2005, Hadsell et al. 2006):

Learn A s.t.                               is small for semantically close x and y, 
where A is positive semi-definite.

Learn a mapping    s.t.                           is small for semantically close x 
and y.
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● Simultaneously learn the encoding process and a (pseudo) distance
○ Get a (pseudo) metric space tailored to the task at hand
○ Approximate the density ratio commonly used for hypothesis tests under generative 

verification

● From a practical perspective:
○ Simplify training compared to standard metric learning
○ End-to-end scoring as opposed to complex verification pipelines

TL;DR
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● Learn encoder and “distance” such that:

Method

: Positive pair of examples (same class)

: Negative pair of examples
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● Learn encoder and “distance” such that:

Method

discriminates encoded positive and negative pairs of examples
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● It is well known that the optimal discriminator will yield the density ratio:
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● It is well known that the optimal discriminator will yield the density ratio:

● And we have the following for trials such that                              :
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*

● For the encoder, we plug the optimal discriminator into the above and find that:
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*

● For the encoder, we plug the optimal discriminator into the above and find that:

● The density ratio given by the optimal discriminator and encoder is calibrated in 
the sense that selecting a threshold is trivial:
○ The ratio will always explode or collapse
○ Any positive threshold yields correct decisions
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● Training can be carried out with 
alternate or simultaneous updates
○ We found both to perform 

similarly

● We make further use of labels to 
compute a standard classification loss
○ Found empirically to accelerate 

training

● No special scheme for selecting pairs
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● Directly embedding pixels into ℝ2

● Reasonably clustered test 
examples even if that was never 
enforced in the Euclidean sense



Verifying standard distance properties in trained models
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Proof-of-concept experiments on images
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● Baselines: Standard Euclidean metric-learning 
with online hard negative mining

● Evaluation: Trials created via pairing of all test 
examples
○ Cifar-10: closed set
○ Mini-ImageNet: open set

● Our models perform at least as well while 
requiring no special pair selection strategy or 
complicated loss
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● Speaker verification on VoxCeleb:
○ Open-set: new speakers and languages at 

test time

● Able to outperform standard verification pipelines 
as well as recently introduced E2E approaches

● Ablation results indicate that the auxiliary loss 
boosts performance at no relevant cost

● More results in the paper for other partitions of 
the VoxCeleb test data
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● Distance models of increasing depth

● Baselines: Standard Euclidean 
metric-learning with online hard 
negative mining

● Evaluation: Trials created via pairing of 
all test examples

○ ImageNet: closed set

● Stable with respect to some of the 
introduced hyperparameters

○ Introduced hyperparameters can 
be easily tuned
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● Learn kernel functions for various tasks

● Learn space partitions in the pseudo metric spaces: prototypical nets style

● Borrow results from domain adaptation literature to derive generalization 
guarantees for the open-set case
○ Over pairs, new classes are simply new domains
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Thank you!

joao.monteiro@emt.inrs.ca

https://github.com/joaomonteirof/e2e_verification


