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The verification problem

e Given a trial T=4{x, x,}, decide whether the underlying classes are the same (target trial)

or not (non-target trial)
o Trial: a pair of examples (or a pair of sets of examples)

e Two settings:
o Closed-set:
m Same classes at train and test time
o Open-set:
m New classes at test time

e Popular instances:
o Biometrics
o Forensics



The verification problem

Type I trial: X . . x Non-target

Verification Reject

Claimed
Class Xtest

Type Il trial:

Target

e Type | trials: Accept
o Enrollment set + test example

e Type Il trials:
o Claimed class + test example
o Closed-set only



The Neyman-Pearson approach to the verification problem

_ p(THo)
M= )

e [ Target trials (same classes)
e H :Non-target trials (different classes)

e Decision rule: Compare the likelihood ratio (LR) with a threshold



The Neyman-Pearson approach to the verification problem

IR — p(T'|Ho) > LR= PX prou (Ttest)
p(T'|H:) PUBM (Ttest)
e [ Target trials (same classes)
e H :Non-target trials (different classes)
e Decision rule: Compare the likelihood ratio (LR) with a threshold
e (Generative approaches approximate both terms in LR

o Very often employing complex pipelines
o Some attempts towards end-to-end settings in recent literature
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Represent data in a metric space where distances indicate semantic relationships
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Distance metric learning / Metric learning

e Represent data in a metric space where distances indicate semantic relationships
o Distance metric learning: learn how to assess similarity/distance

m E.g., Mahalanobis distance learning (Xing et al. 2003):

Learn 4 s.t. v/(z — y)*A(z — y) is small for semantically close x and y,
where 4 is positive semi-definite.

o Metric learning: learn an encoding process instead

m E.g., Siamese nets (Bromley et al. 1994, Chopra et al. 2005, Hadsell et al. 2006):

Learn a mapping € s.t. ||€(x) — £(y)||2 is small for semantically close x
and y.
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TL;DR

e Simultaneously learn the encoding process and a (pseudo) distance
o Get a (pseudo) metric space tailored to the task at hand
o Approximate the density ratio commonly used for hypothesis tests under generative
verification

e From a practical perspective:

o Simplify training compared to standard metric learning
o End-to-end scoring as opposed to complex verification pipelines
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Method

Learn encoder and “distance” such that:

E,D =argmin —E, +_,+ log(D of(z1)) — ]E;,;—Np— log(1 —Do&(x™))

x+ . Positive pair of examples (same class)

2 : Negative pair of examples

Do&(z") = D(E(xT))
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Method

Learn encoder and “distance” such that:

E,D =argmin —E, +_,+ log(D of(z1)) — ]E;,;—Np— log(1 —Do&(x™))

‘D discriminates encoded positive and negative pairs of examples
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Main results

E,D =argmin —E, +_,+ log(D of(z1)) — ]Ex—,\,p— log(1 —Do&(x™))

It is well known that the optimal discriminator will yield the density ratio:

* (1) — pj(Z/)
P pa (2') + p= (2)
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Main results

E,D =argmin —E, +_,+ log(D of(z1)) — ]Ex—,\,p— log(1 —Do&(x™))

e |[tis well known that the optimal discriminator will yield the density ratio:

* (1) — pj(Z/)
P pa (2') + p= (2)

e And we have the following for trials such that 7" = {zenro1r, Ttest }:

py(2) _ Py (E(Tenronn), € (Test)) ,: p(T'Hy)
Dz (Z/) Dz (S(xenroll)yg(ajtest)) | p(T‘Hl)
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Main results

E,D=argmin —E_+_,+log(Do&(z")) —E,—,- log(l —Do&(z™))
For the encoder, we plug the optimal discriminator into the above and find that:

E > supp(pl) N supp(p;) = @
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Main results

E,D=argmin —E_+_,+log(Do&(z")) —E,—,- log(l —Do&(z™))
e For the encoder, we plug the optimal discriminator into the above and find that:

E > supp(pl) N supp(p;) = @

e The density ratio given by the optimal discriminator and encoder is calibrated in
the sense that selecting a threshold is trivial:
o The ratio will always explode or collapse
o Any positive threshold yields correct decisions
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Training details

Algorithm 1 Training procedure.

E,D = Initialize M odels()

repeat
x,y = SampleMinibatch()
Z =& W)

2T = GetAll PositivePairs(z,y)
2~ = GetAllNegative Pairs(z,y)
y' = ProjectOntoSimplex(z)
L'=L(z",27)+ Lee(y,y)
E,D = UpdateRule(E,D, L")
until Maximum number of iterations reached
return £, D

Training can be carried out with
alternate or simultaneous updates
o We found both to perform
similarly
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Training details

Algorithm 1 Training procedure.

E,D = Initialize M odels()

repeat
x,y = SampleMinibatch()
Z =& W)

2T = GetAllPositive Pairs(z,y)
2~ = GetAllNegative Pairs(z,y)
y' = ProjectOntoSimplex(z)
L'=L(z",27)+ Lee(y,y)

E,D = UpdateRule(E,D, L")
until Maximum number of iterations reached
return £, D

Training can be carried out with
alternate or simultaneous updates
o We found both to perform
similarly

We make further use of labels to
compute a standard classification loss
o Found empirically to accelerate

training

No special scheme for selecting pairs
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Properties of learned distance:

15 4

10 4

-10 4

-15 A

embedding MNIST in R’

e Directly embedding pixels into &’
e Reasonably clustered test

examples even if that was never
enforced in the Euclidean sense
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Verifying standard distance properties in trained models
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Evaluation of properties given by outputs of D’ = 1 — D.
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Baselines: Standard Euclidean metric-learning
with online hard negative mining

Evaluation: Trials created via pairing of all test

examples
o Cifar-10: closed set
o Mini-ImageNet: open set

Our models perform at least as well while
requiring no special pair selection strategy or
complicated loss

Proof-of-concept experiments on images

Scoring EER I-AUC

Triplet Cosine 3.80% 0.98%

% E2E 343%  0.60%
Cogr-1¢ Proposed Cosine 3.56%  1.03%
Cosine + E2E 3.42%  0.80%

Triplet Cosine 2891% 21.58%

Mini-ImageNet E2E 28.64% 21.01%
(Validation) Proposed Cosine 30.66% 23.70%
Cosine + E2E  28.49% 20.90%

Triplet Cosine 29.68% 22.56%

Mini-ImageNet E2E 29.26% 22.04%
(Test) Proposed Cosine 32.97% 27.34%
Cosine + E2E  29.32% 22.24%
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Large scale experiment on VoxCeleb

Speaker verification on VoxCeleb:
o Open-set. new speakers and languages at
test time

Able to outperform standard verification pipelines
as well as recently introduced E2E approaches

Ablation results indicate that the auxiliary loss
boosts performance at no relevant cost

More results in the paper for other partitions of
the VoxCeleb test data

Scoring Training set  EER

VoxCeleb1 Test set
Nagrani et al. (2017) PLDA VoxCelebl  8.80%
Cai et al. (2018) Cosine VoxCelebl  4.40%
Okabe et al. (2018) Cosine VoxCelebl 3.85%
Hajibabaei & Dai (2018) Cosine VoxCelebl  4.30%
Ravanelli & Bengio (2019) Cosine VoxCelebl  5.80%
Chung et al. (2018) Cosine VoxCeleb2  3.95%
Xie et al. (2019) Cosine VoxCeleb2 3.22%
Hajavi & Etemad (2019) Cosine VoxCeleb2 4.26%
Xiang et al. (2019) Cosine VoxCeleb2 2.69%
Kaldi recipe’ PLDA VoxCeleb2  2.51%
Proposed Cosine VoxCeleb2  4.97%
Proposed E2E VoxCeleb2 2.51%
Proposed Cosine + E2E~ VoxCeleb2 2.51%
Proposed PLDA VoxCeleb2  3.75%
Ablation (—Lcg) E2E VoxCeleb2  3.44%

27



Varying the depth of the distance model - ImageNet

Distance models of increasing depth — Baseline = E2E
4.00%

Baselines: Standard Euclidean

metric-learning with online hard S

negative mining 3.50%

Evaluation: Trials created via pairing of .,
all test examples

o ImageNet: closed set

2.50%

Stable with respect to some of the
introduced hyperparameters

o Introduced hyperparameters can 20 pepthet Depth=2 Depth=3 Depth=4 Depth=5

be easily tuned



Future directions

Learn kernel functions for various tasks
Learn space partitions in the pseudo metric spaces: prototypical nets style
Borrow results from domain adaptation literature to derive generalization

guarantees for the open-set case
o Over pairs, new classes are simply new domains
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Thank you!

joao.monteiro@emt.inrs.ca

https://github.com/joaomonteirof/e2e verification
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