

Frustratingly Simple Few-Shot Object Detection

Xin Wang*¹, Thomas E. Huang*², Trevor Darrell¹, Joseph E. Gonzalez¹, Fisher Yu¹

¹UC Berkeley ²University of Michigan

Few-Shot Object Detection

Many examples common things

Few examples new concepts or rare objects

The REAL Detection Task

Humans can quickly generalize from few examples

Hard to annotate many examples for each concept

Trend: Meta Learning

Trend: Meta Learning

Problems

Model Complexity

The meta learner adds extra components to the model

Memory Consumption

Training requires loading in images for each class at once

What about Simple Finetuning?

Finetuning has a proven record for model adaption

Finetuning may lead to overfitting given a few examples

Finetuning Comes to the Rescue

We find finetuning with controlled capacity can advance the best results of few-shot object detection significantly

Our Approach: Base Training

Our Approach: Few-Shot Finetuning

Cosine Similarity Based Box Classifier

Issue with Existing Benchmarks

More Stable Benchmarks

Dataset Statistics

	# Classes	# Base Classes	# Novel Classes
PASCAL VOC (Everingham et al.)	20	15	5
COCO (Lin et al.)	80	60	20
LVIS (Gupta et al.)	1230	776	454

Evaluation on PASCAL VOC

Evaluation on PASCAL VOC

Evaluation on COCO

Evaluation on COCO

Evaluation on COCO

Evaluation on LVIS

Success Cases on VOC

Failure Cases on VOC

Success Cases on COCO

Failure Cases on COCO

Summary

- Instead of meta-learning, we find fine-tuning only the last layers of the detector to be crucial for few-shot object detection
- Our approach achieves state-of-the-art performance on existing benchmarks
- We build new benchmarks to address the unreliability of existing benchmarks

