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Bias Variance Tradeoff v.s. Double Descent

- Recall the classical principle:

Risk = Bias? + Variance

Risk 4
Risk

Variance

Bias?
_ >
Model Complexity

e Decreasing bias, increasing variance
e Minimize Risk by obtaining a balance
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Prior Explanation: Double Descent Risk Curve

Mysteries:

- More often get monotonically decreasing risk in practice.
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Prior Explanation: Double Descent Risk Curve

Mysteries:

- More often get monotonically decreasing risk in practice.

Is there a simpler underlying phenomenon?
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Our Proposal

- Solution: Revisiting Bias-Variance Tradeoff
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Phenomenon: monotonic bias + unimodal variance

Z. Yang, Y. Yu, C. You, J. Steinhardt, Y. Ma (2020)



Experiment: Unimodal Variance Curve

- Three Possible Patterns
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Experiment: Unimodal Variance Curve

- Robustness of the phenomenon
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Experiment: Unimodal Variance Curve

Computing Bias and Variance:

- Learned classifier f(x) ( depends on dataset 7)), predict y

- Recall bias-variance decomposition for mean-squared error:

ip((y — f(2))*] = (y — Ep[f(2)])* + Varp[f(z)]
MSE Bias? Variance

- Expectation taken over randomness in training data 7D

- Will consider average bias/variance over test dist., i.e.

Bias® := E, 4 [(y — Ep[f(2)])?]
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Experiment: Unimodal Variance Curve

How to compute from data? (Only one dataset D )

. Learned classifier f(x) ( depends on dataset D), predict y

- Split data into two halves Dy, Do

. Train classifiers f;, f,

. Unbiased estimate of variance: %(fl (z) — fa(x))?
- Average over multiple splits to get better estimate

- Compute Bias via Bias® = MSE — Variance



Experiment: Unimodal Variance Curve

- Label Noise: Direct Connection to Double Descent
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Experiment: Unimodal Variance Curve

- Label Noise: Direct Connection to Double Descent
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Experiment: Unimodal Variance Curve

- Bonus: Increased bias explains drop in out-of-distribution accuracy

D. Hendrycls, T. Dietterich (2020)



Experiment: Unimodal Variance Curve

- Bonus: Increased bias explains drop in out-of-distribution accuracy
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Theory: Analysis of Two-Layer Network

- Comparison: Random design v.s. Fixed Design
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- Monotonic bias + unimodal variance demystifies double
descent

- Need to get details right (estimator? random or fixed design?)

- Robustness of phenomenon: suggests “fundamentalness”,
provides target for explanation

+ Open question: Why is variance unimodal?
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