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Bias Variance Tradeoff v.s. Double Descent

• Recall the classical principle:
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Prior Explanation: Double Descent Risk Curve

• Proposed Solution:

 M. Belkin, D. Hsu, S. Ma, S. Mandal (2018)
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Prior Explanation: Double Descent Risk Curve

• More often get monotonically decreasing risk in practice.

B. Neyshabur, R. Tomioka, N. Srebro (2014)
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Prior Explanation: Double Descent Risk Curve

Mysteries:

Is there a simpler underlying phenomenon?

• More often get monotonically decreasing risk in practice.
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Our Proposal

• Solution: Revisiting Bias-Variance Tradeoff

 Z. Yang, Y. Yu, C. You, J. Steinhardt, Y. Ma (2020)

CIFAR-10

Phenomenon: monotonic bias + unimodal variance



Experiment: Unimodal Variance Curve

• Three Possible Patterns

 Z. Yang, Y. Yu, C. You, J. Steinhardt, Y. Ma (2020)
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Experiment: Unimodal Variance Curve

• Robustness of the phenomenon

 Z. Yang, Y. Yu, C. You, J. Steinhardt, Y. Ma (2020)
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Experiment: Unimodal Variance Curve

Computing Bias and Variance:

• Learned classifier  ( depends on dataset      ), predict  

• Recall bias-variance decomposition for mean-squared error:

f(x) y

• Expectation taken over randomness in training data 

• Will consider average bias/variance over test dist., i.e.
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Experiment: Unimodal Variance Curve

How to compute from data? (Only one dataset       )

• Learned classifier  ( depends on dataset      ), predict  

• Split data into two halves 

• Train classifiers ,  

• Unbiased estimate of variance:  

• Average over multiple splits to get better estimate 

• Compute Bias via

f(x) y

f1 f2



Experiment: Unimodal Variance Curve

P. Nakkiran et al. (2019)

• Label Noise: Direct Connection to Double Descent



Experiment: Unimodal Variance Curve

• Label Noise: Direct Connection to Double Descent

 Z. Yang, Y. Yu, C. You, J. Steinhardt, Y. Ma (2020)



Experiment: Unimodal Variance Curve

• Bonus: Increased bias explains drop in out-of-distribution accuracy

D. Hendrycls, T. Dietterich (2020)



Experiment: Unimodal Variance Curve
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 Z. Yang, Y. Yu, C. You, J. Steinhardt, Y. Ma (2020)
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Theory: Analysis of Two-Layer Network

• Statistical Assumption on Data:

Techniques of Proof: 
1. Random Matrix Theory (Spectral Theorems); 
2. Combinatorics of Non-crossing partitions. 
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Theory: Analysis of Two-Layer Network

• Comparison: Random design v.s. Fixed Design

S. Mei, A. Montanari (2019)
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Take-aways

• Monotonic bias + unimodal variance demystifies double 

descent 

• Need to get details right (estimator? random or fixed design?) 

• Robustness of phenomenon: suggests “fundamentalness”, 

provides target for explanation, aids reliable prediction 

• Open question: Why is variance unimodal?



Thanks!


