Second-order provable defenses against adversarial examples

Sahil Singla, Soheil Feizi Department of Computer Science University of Maryland

https://github.com/singlasahil14/so-robust

What are adversarial examples?

Empirical Defenses against adversarial attacks

- Work empirically but no theoretical guarantee
- **Examples**: Adversarial training [Madry et al. 2017, Kurakin et al.'17, Carlini & Wagner '16], Defensive distillation [Papernot et al. 2015], Defense-GAN [Samangouei et al. 2018], CURE [Moosavi et al. 2018], etc.
- Broken by newer adaptive attacks [e.g. Carlini et al. 2017]!

Certified Defenses against adversarial attacks

- Theoretical guarantees against all attacks within a certain threat model
- **Examples**: Convex-relaxations [Wong et al. 2017], Interval bound propagation [Gowal et al. 2018], Randomized smoothing [Cohen et al. 2019], CROWN-IBP [Zhang et al. 2019], CNN-Cert [Boopathy et al. 2018], etc.
- All use first-order information of the model (i.e. gradients)

Question: can higher-order information be used in improving provable robustness?

Intuition: Curvature Effect in Robustness

Low curvature translates to large robustness radius

Problem Setup

Classification using deep fully-connected network

- Differentiable activations (e.g. sigmoid, tanh, softplus, etc.)
- Gradient: $\mathbf{g}(\mathbf{x}) := \nabla_{\mathbf{x}} f(\mathbf{x})$ Hessian: $\mathbf{H}(\mathbf{x}) := \nabla_{\mathbf{x}}^2 f(\mathbf{x})$
- Input to layer I: $\mathbf{z}^{(I)}$

- Output of layer *I*: $\mathbf{a}^{(I)} = \sigma(\mathbf{z}^{(I)})$

Certification problem framework

Curvature-based Certificate

Theorem

If
$$m\mathbf{I} \preccurlyeq \nabla_{\mathbf{x}}^2 f \preccurlyeq M\mathbf{I}$$
 $\forall \mathbf{x} \in \mathbb{R}^n$

 $d(\eta)$ can be computed via convex opt for $\frac{-1}{M} \le \eta \le \frac{-1}{m}$

$$p^* \ge d^* := \max_{-1/M \le \eta \le -1/m} d(\eta)$$

Curvature-based Robustness

Certificate (**CRC**)

Tightness property of the proposed approach

$$p^* \ge d^* := \max_{\substack{-1/M \le \eta \le -1/m}} d(\eta)$$
solution: (η^*, \mathbf{x}^*)

If
$$f(\mathbf{x}^*) = 0 \implies primal = dual$$

No such guarantee exists for first-order robustness methods!

Similar results for the attack problem framework

	Certificate problem (-) = cert	Attack problem (-) = attack
primal problem, $p_{(-)}^*$	$\min_{f(\mathbf{x})=0} 1/2 \ \mathbf{x} - \mathbf{x}^{(0)}\ ^2$	$\min_{\ \mathbf{x}-\mathbf{x}^{(0)}\ \leq \rho} f(\mathbf{x})$
dual function, $d_{(-)}(\eta)$	$\min_{\mathbf{x}} 1/2 \ \mathbf{x} - \mathbf{x}^{(0)}\ ^2 + \eta f(\mathbf{x})$	$\min_{\mathbf{x}} f(\mathbf{x}) + \eta/2(\ \mathbf{x} - \mathbf{x}^{(0)}\ ^2 - \rho^2)$
When is dual solvable?	$-1/M \le \eta \le -1/m$	$-m \le \eta$
dual problem, $d^*_{(-)}$	$\max_{-1/M \le \eta \le -1/m} d_{cert}(\eta)$	$\max_{-m \le \eta} d_{attack}(\eta)$
When primal = dual?	$f(\mathbf{x}^{(cert)}) = 0$	$\ \mathbf{x}^{(attack)} - \mathbf{x}^{(0)}\ = \rho$

f denotes the classifier. ρ is the radius of the ball.

How to compute the curvature bounds?

Theorem

We use this formula to compute the curvature bounds

How to compute the curvature bounds?

Example: two layer network

$$H(\mathbf{x}) = (\mathbf{W}^{(1)})^T \operatorname{diag}\left(\mathbf{W}^{(2)} \odot \boldsymbol{\sigma''}(\mathbf{z}^{(1)})\right) \mathbf{W}^{(1)}$$

Depends on weights (not the input)

Depends on the input

For activations tanh, sigmoid, softplus we have

$$h_L \le \sigma''(x) \le h_U$$

$$\forall x \in \mathbb{R}$$

$$\min(\mathbf{W}_i^{(2)} h_L, \mathbf{W}_i^{(2)} h_U) \le \mathbf{W}_i^{(2)} \sigma''(\mathbf{z}_i^{(1)}) \le \max(\mathbf{W}_i^{(2)} h_L, \mathbf{W}_i^{(2)} h_U) \qquad \forall \mathbf{x}$$

How to compute the curvature bounds?

$$\mathbf{N} = (\mathbf{W}^{(1)})^T \operatorname{diag} \left(\min(\mathbf{W}^{(2)} h_L, \mathbf{W}^{(2)} h_U) \right) \mathbf{W}^{(1)}$$

$$\mathbf{P} = (\mathbf{W}^{(1)})^T \operatorname{diag} \left(\max(\mathbf{W}^{(2)} h_L, \mathbf{W}^{(2)} h_U) \right) \mathbf{W}^{(1)}$$

This gives the following matrix inequalities:

$$\mathbf{N} \preceq H(\mathbf{x}) \preceq \mathbf{P} \qquad \forall \mathbf{x} \in \mathbb{R}^n$$

$$m = -\|\mathbf{N}\|_2, \qquad M = \|\mathbf{P}\|_2$$

$$m\mathbf{I} \preceq H(\mathbf{x}) \preceq M\mathbf{I} \qquad \forall \mathbf{x} \in \mathbb{R}^n$$

Similar result for deeper nets (with more complex proof)

Confronting the Hessian

Newton Step Update (Certificate):

$$\mathbf{x}^{(k+1)} = -(\mathbf{I} + \eta \mathbf{H}^{(k)})^{-1} \left(\eta \mathbf{g}^{(k)} - \mathbf{x}^{(0)} - \eta \mathbf{H}^{(k)} \mathbf{x}^{(k)} \right)$$
• Since $\frac{-1}{M} \le \eta \le \frac{-1}{m} \implies \|\eta \mathbf{H}^{(k)}\|_2 < 1$,
$$(\mathbf{I} + \eta \mathbf{H}^{(k)})^{-1} \approx \mathbf{I} - \eta \mathbf{H}^{(k)} + (\eta \mathbf{H}^{(k)})^2 - (\eta \mathbf{H}^{(k)})^3 \dots$$

Can efficiently be computed via Hessian vector product!

Training with Curvature Regularization

- Deep networks computed by standard/adversarial training can have very high curvature bounds
- Curvature-based Robust Training (CRT)

Empirical results with Curvature Regularization

• 3 layer fully connected network, sigmoid activations, MNIST

Certified Robust accuracy comparison

Network	Training	Standard Accuracy	Certified Robust Accuracy
2×[1024],	CRT, 0.01	98.68%	69.79%
softplus	CROWN-IBP	88.48%	42.36%
2×[1024],	COAP	89.33%	44.29%
relu	CROWN-IBP	89.49%	44.96%
$3 \times [1024],$	CRT, 0.05	97.43%	57.78%
softplus	CROWN-IBP	86.58%	42.14%
$3 \times [1024],$	COAP	89.12%	44.21%
relu	CROWN-IBP	87.77%	44.74%
$4 \times [1024]$, softplus	CRT, 0.07	95.60%	53.19%
	CROWN-IBP	82.74%	41.34%
4×[1024],	COAP	90.17%	44.66%
relu	CROWN-IBP	84.4%	43.83%

Comparison between Convex Outer Adversarial Polytope (COAP), CROWN-IBP and Curvature-based Robust Training i.e CRT (ours) with Attack radius $\rho=1.58$ on the MNIST dataset.

Certificate comparison

Network	Training	Certificate (mean)		
		CROWN	CRC	
2×[1024], sigmoid	standard	0.28395	0.48500	
	$\gamma = 0.01$	0.32548	0.84719	
	CRT, 0.01	0.43061	1.54673	
3×[1024], sigmoid	standard	0.24644	0.06874	
	γ = 0.01	0.39799	1.07842	
	CRT, 0.01	0.39603	1.24100	
4×[1024], sigmoid	standard	0.19501	0.00454	
	$\gamma = 0.01$	0.40620	1.05323	
	CRT, 0.01	0.40327	1.06208	

Comparison between
CROWN and Curvaturebased Robustness
Certificate i.e CRC (ours) on
the MNIST dataset.

How frequently primal equals dual?

Network	γ	Accuracy	Certificate success	Attack success
$2 \times [1024],$	0.	98.77%	2.24%	5.05%
sigmoid	0.03	98.30%	44.17%	100%
3×[1024],	0.	98.52%	0.12%	0.%
sigmoid	0.05	97.60%	22.59%	100%
$4 \times [1024],$	0.	98.22%	0.01%	0.%
sigmoid	0.07	95.24%	19.53%	100%

Certificate success rate is the fraction of points satisfying $f(\mathbf{x}^*) = 0$. Attack success rate is the fraction satisfying $\|\mathbf{x}^* - \mathbf{x}^{(0)}\|_2 = \rho = 0.5$ Both imply *primal=dual*. Results are on the MNIST dataset.

Results using local, not global curvature bounds

Network	Training	CRC (Global)	CRC (Local)
2×[1024], sigmoid	standard	0.5013	0.5847
	CRT, 0.0	1.0011	1.1741
	CRT, 0.01	1.5705	1.6047
	CRT, 0.02	1.6720	1.6831

Comparison between CRC computed using global and local curvature bound on the MNIST dataset with attack radius $\,\rho=0.5\,$ for a 2 layer network.

Extension to convolutional neural networks

	MNIST				
γ	Standard Accuracy	Certified Robust Accuracy	CNN-Cert [4]	CRC (Ours)	Certificate Improvement (Percentage %)
0	98.35%	0.0%	0.1503	0.1770	17.76%
0.01	94.85%	75.26%	0.2135	0.8427	294.70%
0.02	93.18%	74.42%	0.2378	0.9048	280.49%
0.03	91.97%	72.89%	0.2547	0.9162	259.71%

Comparison between CRC and CNN-Cert for different values of the regularization parameter γ for a single hidden layer convolutional network with the tanh activation function [Singla & Feizi, 2019]. For Certified Robust Accuracy, we use $\rho=0.5$.

Summary

- We derive a new formulation for the robustness certification that uses the second-order information of the network (i.e. curvature values)
- Our curvature-based certificate is based on two key results:
 - ✓ We derive a closed-form formula for the Hessian of a network with smooth activation functions
 - ✓ We derive differentiable global upper bounds on the curvatures values of the network
- Curvature-based certificates are exact for significant fraction of test inputs.

https://github.com/singlasahil14/so-robust

Questions?