Second-order provable defenses against
adversarial examples

Sahil Singla, Soheil Feizi
Department of Computer Science
University of Maryland

https://github.com/singlasahil14/so-robust



https://github.com/singlasahil14/so-robust

What are adversarial examples?

input image classified as

STOP

*

adversarial noise

adversarial image

misclassified as

YIELD




Empirical Defenses against adversarial attacks

« Work empirically but no theoretical guarantee

« Examples: Adversarial training [Madry et al. 2017, Kurakin et al."17, Carlini
& Wagner '16], Defensive distillation [Papernot et al. 2015], Defense-GAN
[Samangouei et al. 2018], CURE [Moosavi et al. 2018], etc.

» Broken by newer adaptive attacks [e.g. Carlini et al. 2017] !

©



Certified Defenses against adversarial attacks

« Theoretical guarantees against all attacks within a certain threat model

Examples: Convex-relaxations [Wong et al. 2017], Interval bound
propagation [Gowal et al. 2018], Randomized smoothing [Cohen et al. 2019],

CROWN-IBP [Zhang et al. 2019], CNN-Cert [Boopathy et al. 2018], etc.

All use first-order information of the model (i.e. gradients)

Question: can higher-order information be used in improving provable
robustness?



Intuition: Curvature Effect in Robustness
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_ Classification score

Low curvature translates to large robustness radius



Problem Setup

Classification using deep fully-connected network

Differentiable activations (e.g. sigmoid, tanh, softplus, etc.)
Gradient: 8(X) := Vxf(x) « Hessian: H(x) := V2 f(x)
Input to layer . z¥) - Output of layer . a'!) = 5 (21)



Certification problem framework
f(x)=0

2 0) > distance to decision boundary
X
N . ]_ 2 lagrangian . ]_ 2
p*=min < [x —xol> = minmax > |x %ol +7f(x)
X 2 X n 2
fx)=0
d(n) , still non-convex
/ min-max ! 1 5 !
non-convex optimization > m,naX m}:n 5 HX o XOH + ﬂf(X)
— max d(n)

n



Curvature-based Certificate

e Theorem

i mIVaif<MI Vx € R"

) —1 —1
— << < —
d(n) can be computed via convex opt for - <n < —

p > dt = max d(n)

/ —1/M<n<-1/m

Curvature-based Robustness

Certificate (CRC)



Tightness property of the proposed approach

>dF = d
RS, A

|
solution: (77*, X*)

If f(x*)=0 = primal = dual

® No such guarantee exists for first-order robustness methods!



Similar results for the attack problem framework

Certificate problem (_y _ ccp

primal problem, pz_)

ming ()= 1/2[x - x|?

Attack problem (_) - 4itack

dual function, d(_y(n)

miny 1/2[x - x(0) 12+ nf(x)

ming x| f (X)

miny f(x) +7/2(|x - x> - p*)

When is dual solvable?

-1/M <n<-1/m

-m<n

dual problem, dz_)

maX_l/Mgng-l/m dce'rt (77)

maxX_m<ny dattack (77)

When primal = dual?

f(X(cert)) =0

”X(attack) _ X(0) ” =p

f denotes the classifier. p is the radius of the ball.




How to compute the curvature bounds?

* Theorem
L—1 -
H(x)=)» (J¥) diag (JW) ot (Zm)) 3
=1 \l \
Jacobian of z") wrt x Jacobian of z(") w.rt a(I)

«  We use this formula to compute the curvature bounds



How to compute the curvature bounds?

« Example: two layer network
H(x) = (WD) diag (W © o/(20)) W

Depends on weights (not the

input) Depends on the input

» For activations tanh, sigmoid, softplus we have

hy < O'N(SU) < hy Vr e R

1

min(W P hy, Why) < WPe" (2) < max(WPhy, Why)




How to compute the curvature bounds?
N = (WD) diag (min(W®hy, Why)) WO
P = (WD) diag (max(WPh,, W hy)) W)
« This gives the following matrix inequalities:
NxHx =P Vx € R"
m = —|INll2, M =[P

> ml < H(x) < M1 Vx € R"

« Similar result for deeper nets (with more complex proof)



Confronting the Hessian

* Newton Step Update (Certificate):

xF+D) = (T 4+ pH®) -1 (ngm _ 50 _ 77H<l~c>x<k>)

« Since _Mlgng_—l —  |[pHW||5 < 1,

m

[+ yH™) ™ m T—gH® + (pH®)? — (pHW)? .

« Can efficiently be computed via Hessian vector product!



Training with Curvature Regularization

« Deep networks computed by standard/adversarial training can have very
high curvature bounds

» Curvature-based Robust Training (CRT)

Computed using our attack optimization

N 4
ImM1ing Ezizlg(‘fb(xi)vyi) + K(@) ]

~ J v W_/
/ Curvature / \
Cross entropy regularization Differentiable

coefficient curvature bound



Empirical results with Curvature Regularization

L —— Upper bound (Kyp) with CRT

106 4 ——- Lower bound (Kjp) with CRT
® Upper bound (K») with PGD

10° 1 A Lower bound (Kj5) with PGD

104 _

103 .

102 _

101 .

Eigenvalue bounds for the Hessian

000 001 002 003 004 005 006 0.07
Curvature Regularization coefficient, y

« 3 layer fully connected network, sigmoid activations, MNIST



Standard Certified
Network Training Robust
Accuracy
Accuracy
2x[1024], | CRT, 0.01 98.68 % 69.79 %
softplus CROWN-IBP | 88.48% | 42.36%
2x[1024], | COAP 89.33% 44.29%
relu CROWN-IBP | 89.49% 44.96%
3x[1024], | CRT;, 0.05 97.43 % 57.78%
softplus CROWN-IBP | 86.58% 42.14%
3x[1024], | COAP 89.12% 44.21%
relu CROWN-IBP | 87.77% 44.74%
4x[1024], | CRT, 0.07 95.60 % 53.19%
softplus CROWN-IBP | 82.74% 41.34%
4x[1024], | COAP 90.17% 44.66%
relu CROWN-IBP | 84.4% 43.83%

Certified Robust accuracy comparison

Comparison between Convex
Outer Adversarial Polytope
(COAP), CROWN-IBP and
Curvature-based Robust
Training i.e CRT (ours) with
Attack radius p = 1.58 on
the MNIST dataset.



Certificate comparison

Certificate (mean)

Network Training
CROWN | CRC
05 11024 standard 0.28395 0.48500
(1024, = 032548 | 0.84719
sigmoid
CRT, 0.01 | 0.43061 1.54673
standard 0.24644 0.06874
3x[1024],
: : v =0.01 0.39799 1.07842
sigmoid
CRT, 0.01 | 0.39603 1.24100
Ax[1024 standard 0.19501 0.00454
X
. [ : J v=0.01 0.40620 1.05323
sigmoid
CRT, 0.01 | 0.40327 1.06208

Comparison between
CROWN and Curvature-
based Robustness
Certificate i.e CRC (ours) on
the MNIST dataset.



How frequently primal equals dual?

Network y Accuracy Certificate| Attack
SUCCeSS SUCCESS
2x[1024], | 0. 98.77% 2.24% 5.05%
sigmoid | 0.03 | 98.30% 44.17% 100%
3x[1024], | O. 98.52% 0.12% 0.%
sigmoid | 0.05 | 97.60% 22.59% 100%
4x[1024], | O. 98.22% 0.01% 0.%
sigmoid | 0.07 | 95.24% 19.53% 100%

Certificate success rate is the fraction of points satisfying f(x*) =0
Attack success rate is the fraction satisfying ||x* — x|y = p = 0.5
Both imply prima/=dual. Results are on the MNIST dataset.



Results using local, not global curvature bounds

.. CRC CRC
Network | Training (Global) (Local)
standard 0.5013 0.5847
2x[1024], | CRT, 0.0 1.0011 1.1741
sigmoid | CRT, 0.01 | 1.5705 1.6047
CRT, 0.02 | 1.6720 1.6831

Comparison between CRC computed using global and local curvature
bound on the MNIST dataset with attack radius p = 0.5 for a 2 layer
network.



Extension to convolutional neural networks

MNIST
y Standard Certified CNN-Cert | CRC Certificate
Accuracy Robust [4] (Ours) Improvement
Accuracy (Percentage %)

0 98.35% 0.0% 0.1503 0.1770 17.76%

0.01 | 94.85% 75.26% 0.2135 0.8427 294.70%
0.02 | 93.18% 74.42% 0.2378 0.9048 280.49%
0.03 | 91.97% 72.89% 0.2547 0.9162 259.71%

Comparison between CRC and CNN-Cert for different values of the

regularization parameter 7y for a single hidden layer convolutional network
with the tanh activation function [Singla & Feizi, 2019]. For Certified Robust
Accuracy, we use p = 0.5.



Summary

* We derive a new formulation for the robustness certification that uses the
second-order information of the network (i.e. curvature values)

» Our curvature-based certificate is based on two key results:

v" We derive a closed-form formula for the Hessian of a network with
smooth activation functions

v" We derive differentiable global upper bounds on the curvatures values of
the network

« Curvature-based certificates are exact for significant fraction of test inputs.

https://github.com/singlasahill14/so-robust
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Questions?



