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Problem
● A knowledge graph (KG) is a collection of fact triples of the form <subject, relation, object>.
● Since all the facts are not observed, the problem of link prediction (LP) or knowledge graph 

completion (KGC) is the task to infer missing links.
● Specifically, given <subject, relation>, the model learns to predict the missing entity.
● For example, in <Donald Trump, born-in, ?> an LP model should be able to predict New York
● Applications:

○ Extend existing KGs
○ Identifying the truthfulness of a fact
○ In multi-task learning, such as distant relation extraction
○ ...
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Contributions
● We propose a simple and parameter efficient linear model by extending multi-modal factorized 

bilinear pooling (MFB) (Yu et al., 2017) for link prediction.

● We prove that our model is fully expressive, providing bounds on embedding dimensions and the 
factorization rank.

● We provide relationships to the family of bilinear models  (RESCAL (Nickel et al., 2011), DistMult 
(Yang et al., 2015), ComplEx (Trouillon et al., 2016), and SimplE (Kazemi & Poole, 2018)) Tucker 
decomposition (Tucker, 1966) based TuckER (Balažević et al., 2019a), generalizing them as special 
cases. We also show relation to 1D convolutions based HypER (Balažević et al., 2019b).

● We test our model on four real-world datasets, reaching on par or state-of-the-art performance.
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LowFER*

* Low-rank Factorization trick of bilinear maps with k-sized non-overlapping summation pooling for Entities and Relations (LowFER) 4

Introduced by Yu et al. (2017) as MFB.



Theoretical Analysis - I
● An important property of link prediction models is their ability to be fully expressive.
● Potential to separate true triples from incorrect ones.
● A full expressive model can learn all types of relations (symmetric, anti-symmetric, etc.) 
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● LowFER is fully expressive under following conditions:                                       and 



Theoretical Analysis - II
● We show that LowFER can be seen as providing low-rank approximation to TuckER.
● Under certain conditions, it can accurately represent TuckER.
● We provide conditions under which LowFER generalizes:

○ RESCAL
○ DistMult
○ ComplEx
○ SimplE
○ HypER (upto a non-linearity)
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Experiments
● We experimented with four datasets: WN18, WN18RR, FB15k, FB15k-237
● Main results with standard evaluation metrics:
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Best results per metric boldfaced and second best underlined.



Key Findings
● Outperforms several more complicated modeling paradigms: 1D/2D Convolutional Networks 

(Balažević et al., 2019a; Dettmers et al., 2018), Graph Convolutional Networks (Schlichtkrull et al., 
2018), Complex Embeddings (Trouillon et al., 2016), Complex Rotation (Sun et al., 2019), 
Holographic Embeddings (Trouillon et al., 2015), Lie Group Embeddings (Ebisu & Ichise, 2018), 
Graph Walks with Reinforcement Learning and MC Tree Search (Das et al., 2018; Shen et al., 
2018), and Neural Logic Programming (Yang et al., 2017). 

● Outperforms all the bilinear models and translational Models.
● LowFER performs extremely well at low-ranks (1, 10), staying parameter efficient and performant.
● Reaches same or better performance than TuckER (Balažević et al., 2019b) with low-rank 

approximation and less parameters.
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End of Spotlight
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Problem
● A short summary of notation:
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Problem (Cont.)
● In link prediction, we learn to assign score to a triple of <subject, relation, object> :
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● The scoring function can be seen as estimating the true binary tensor of triples:

● The scoring function can be linear or non-linear.
● Many linear models can be seen as factorizing this binary tensor.



Key Modelling Attributes in LP
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● Model expressiveness
● Parameter efficiency
● Robustness to overfitting
● Fully expressive 
● Model interpretability
● Parameter sharing
● Linear



Bilinear Models
Compared to a linear map, a bilinear map                          takes input as two vectors and produces a 
score i.e.

13

It is expressive as it allows pairwise interactions between two feature vectors. In RESCAL, a bilinear 
model, the number of parameters grow quadratically with the number of relations. To circumvent:

LP
Impose structural constraints on 

bilinear maps is prevalent.

MML
Approximate the bilinear 

product.



Low-rank Bilinear Pooling Trick
Compared to a linear map, a bilinear map                          takes input as two vectors and produces a 
score i.e.

Note that one can factorize it with two low-rank matrices,                                             : 
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Low-rank Bilinear Pooling Trick (Cont.)
Since it returns a score only, an o-dimensional vector can be obtained with two 3D tensors:

The final vector in o is then obtained by k-sized non-overlapping sum pooling:
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Low-rank Bilinear Pooling Trick (Cont.)
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This model, called Multi-modal Factorized Bilinear pooling (MFB), was introduced by Yu et al., 2017. 

At k=1, model encodes Multi-modal Low-rank Bilinear pooling (MLB) (Kim et al., 2017).

Earlier work of Multi-modal Compact Bilinear pooling (MCB) (Fukui et al., 2016; Gao et al., 2016) uses 
sampling-based approximation that exploits the property that outer product of count sketch (Charikar et 
al., 2002) of two vectors can be represented as their sketches convolution. With convolution theorem:

But requires very high-dimensional vectors (upto 16K) to perform well. MCB can be seen as closely 
related to Holographic Embeddings (HolE) (Nickel et al., 2015), where authors use circular correlation:



LowFER
● MFB is simple, parameter efficient and works well in practice.
● Allows good fusion between features for better downstream performance.
● We argue that 

○ good fusion between entities and relations,
○ modeling multi-relational (latent) factors of entities,
○ and parameter sharing
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LowFER (Cont.)
● We therefore apply MFB in link prediction setting.
● We show that it is theoretically well sound and generalize to existing linear link prediction models.
● We show that it performs well in practice and already outperforms deep learning models at 

low-ranks.
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LowFER (Cont.)
LowFER scoring function is defined as:

One can compactly represent the above as:

where,

0

0
k
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is a block diagonal matrix of k-sized one vectors.

1s Vector



Training
● Since KG only contains true triples, training requires generating negative triples with open-world 

assumption.
● Different negative sampling techniques exist but Dettmers et al. (2018) introduced a faster approach 

of 1-N scoring.
● For every                    , an inverse triple is created                         to create the training set and for 

any input entity-relation pair in training set                         , we score against all entities.
● Model is trained with binary cross-entropy over mini-batches instead of margin-based ranking loss, 

which is prone to overfitting for link prediction:
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● Following Yu et al. (2017), to stabilize training from large values of Hadamard product, we use 
L2-normalization                           and power normalization                                      .  



Theoretical Analysis - I
● One of the key theoretical property of link prediction models is their ability to learn all-types of 

relations (symmetric, anti-symmetric, transitive, reflexive etc.), i.e., fully expressive model:
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Theoretical Analysis - I (Cont.)
● Transitive models are simple and interpretable but they are theoretically limited:

○ It was first shown by Wang et al. (2018) that TransE (Bordes et al., 2013) is not fully 
expressive.

○ This was expanded by Kazemi & Poole (2018) to other translational variants including TransH 
(Wang et al., 2014), TransR (Lin et al., 2015), FTransE (Feng et al., 2016) and STransE 
(Nguyen et al., 2016).

● DistMult (Yang et al., 2015) enforces symmetry therefore not fully expressive.
● ComplEx (Trouillon & Nickel, 2017), SimplE (Kazemi & Poole, 2018) and TuckER (Balažević et al., 

2019a) belongs to the family of fully expressive linear models.
● Under certain conditions, by universal approximation theorem (Hornik, 1991), feed-forward neural 

networks can be considered fully expressive. 
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Theoretical Analysis - I (Cont.)
● With Proposition 1, we establish that LowFER is also fully expressive.
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Theoretical Analysis - I (Cont.)
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Theoretical Analysis - II
Another important aspect to study is the relationships with other linear models:

● RESCAL (Nickel et al., 2011)
● DistMult (Yang et al., 2015)
● ComplEx (Trouillon et al., 2016)
● SimplE (Kazemi and Poole, 2018)
● HypER (Balažević et al., 2019b)
● TuckER (Balažević et al., 2019a) [sota]
● LowFER

Showed that SimplE and all models above can 
be consider in a family of bilinear models.
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Showed that Hypernetworks based 
1D-convolutional model can be seen as tensor 
factorization up to a non-linearity. 

Showed that Tucker decomposition can 
generalize the family of bilinear models in LP.

We show that LowFER scoring function 
subsumes TuckER as low-rank approximation 
and further that it can accurately represent it. We 
further show it generalizes the family of bilinear 
models in LP. We also show it can generalize 
HypER upto a non-linearity.



Theoretical Analysis - II (TuckER) (Cont.)
TuckER (Balažević et al., 2019a) is a simple and powerful model based on Tucker decomposition 
(Tucker, 1966). It learns a 3D core tensor without any constraints that aims to approximate the KG binary 
tensor. TuckER’s scoring function is given as:

One can re-write LowFER scoring function in terms of outer products:
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Theoretical Analysis - II (TuckER) (Cont.)
From last formulation, pulling the entity and relation embeddings out, one can realize it another way. Take 
k-distance apart slices from U and V such that l-th slice is as:

Taking the column wise outer product (commonly referred as the mode-2 Khatri-Rao product (Cichocki et 
al., 2016) generates k 3D tensors, which added together approximates TuckER tensor:
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            Column-wise outer product of 
two matrices, where the resultant 
matrices are stacked to form 3D tensor.



Theoretical Analysis - II (TuckER) (Cont.)
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Low-rank approximation of the core tensor of TuckER  with LowFER by summing k low-rank 3D tensors, where each 
tensor is obtained by stacking de rank-1 matrices obtained by the outer product of k-apart columns of U and V.



Theoretical Analysis - II (TuckER) (Cont.)
● It is straightforward to show that LowFER can accurately model TuckER under following conditions:
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Theoretical Analysis - II (Cont.)
Hence, following two equations can be interchangeably used for LowFER (they are equivalent):
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Theoretical Analysis - II (RESCAL) (Cont.)
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With these conditions and Eq.     == Eq. 
Parameters Vector

(Nickel et al., 2011)



Theoretical Analysis - II (DistMult) (Cont.)
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Parameters Vector

With these conditions and Eq.     == Eq. 

(Yang et al., 2015)



Theoretical Analysis - II (SimplE) (Cont.)

331s Vector

With these conditions and Eq.     == Eq. 

Reformulation to simple bilinear form:

(Kazemi & Poole, 2018)



Theoretical Analysis - II (ComplEx) (Cont.)

(Trouillon et al., 2016)



Theoretical Analysis - II (ComplEx) (Cont.)

With these 
conditions and Eq.     
== Eq. 

1s Vector

-1s Vector

Real Parameters Vector

Imaginary Parameters Vector



Theoretical Analysis - II (HypER) (Cont.)
HypER (Balažević et al., 2019b) is a convolutional model that uses hypernetworks (Ha et al., 2017) to 
generate 1D convolutional filters. The authors showed that it can be seen as tensor factorization method 
upto a non-linearity. The scoring function is defined as:
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Convolution can be expressed as matrix multiplication, where the filter is a Toeplitz matrix. For n 
filters and d dimensions, this results in sparse 4D tensor where each 3D tensor is a block diagonal 
Toeplitz matrix representing each filter, then:

With these 
conditions and Eq.     
== Eq. 



LowFER Complexity
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LowFER

* Table taken from TuckER (Balažević et al., 2019a)



LowFER Complexity (Cont.)
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Consider Lacroix et al (2018), where authors take d=2000; TuckER requires > 8B parameters (~24 
times larger than sota NLU models like BERT-large); LowFER needs only k x 4M, with k controlling 
the growth. At k=de/2 we expect similar performance as LowFER has same number of parameters 
as TuckER.



Experiments - Data
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We conducted the experiments on four benchmark datasets: WN18 (Bordes et al., 2013), WN18RR 
(Dettmers et al., 2018), FB15k (Bordes et al., 2013) and FB15k-237 (Toutanova et al., 2015).



Experiments - Main Results I
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Experiments - Main Results II
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Experiments - Effect of k
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Effect of changing k on FB15k (de=200, dr=30).
● LowFER performs extremely 

well at low-ranks (k<=10) in 
practice compared to extremely 
large k as in Prop. 1.

● Suggests, TuckER is extremely 
over-parameterized.

● We note that the effect of k is 
inversely related to the ration 
ne/nr.

● At k=de/2, performance almost 
equivalent to TuckER.

● As ne >> de, the influence of 
shared parameters is negligible 
as most of knowledge learned 
by embeddings (WN18/RR).



Experiments - Embedding dimension I
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Effect of changing de on FB15k (dr=30, k=50)

● Changing entity embedding 
dimension has significant effect 
on Hits@1.

● Starts overfitting after de=300.



Experiments - Relation Results
WN18 contains redundant relations                                                                                because one can be 
inferred from the other (Kazemi & Poole, 2018) and therefore WN18RR (a harder dataset) was created 
with those artifacts removed by Dettmers et al. (2018). 

LowFER: -70.6% TuckER: -69.3%
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Only SimplE (Kazemi & Poole, 2018) has formally 
shown to incorporate background knowledge with 
weight tying (cf. Prop. 3, 4, 5). Since, LowFER 
can subsume SimplE, such rules can be studied 
to extend for LowFER.

On WN18RR, we see that both TuckER and LowFER 
retain their performance on symmetric relations (such 
as derivationally_related_form) but perform 
poorly on anti-symmetric relations (such as 
hypernym)



Conclusion
● We proposed a simple and parameter efficient linear model.
● Exhibits interesting theoretical properties.
● Generalizes existing linear models in KGC literature.
● Constraints-free, allows for parameter sharing.
● Outperforms deep learning models by large-margin.
● Performs really well at low-ranks, indicating over-parameterization in TuckER.
● Reaches on-par or state-of-the-art performance on several datas
● Parameter sharing is key to improve the sota.
● Still limited to learn harder relations without background knowledge.

45



Thank You!
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