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Training of Convolutional Neural Networks (CNNs)

  

 

• CIFAR10
- 10 categories
- 60000 images

• CIFAR100
- 100 categories
- 60000 images

• ImageNet Dataset 
- 1000 categories
- 1.2 million images

 

Typical Datasets Typical Networks
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Motivation

  

• Enable wider experimentation 
with training e.g. Neural 
Architecture Search 

• Increase productivity of deep 
learning practitioners

• Reduce cost of training in 
large data centers

• Perform training on edge 
devices 

Training Time Power Consumption

Exploit low-precision 
hardware capabilities
• NVIDIA Turing Architecture (GPU)

• Microsoft Brainwave (FPGA)

• Google TPU (ASIC)
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Goal

Perform quantised training of CNNs while 
maintaining FP32 accuracy and producing a 
model that performs inference at FP32
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Contributions of this paper

• Generalisable policy that decides at run time appropriate points to increase the 
precision of the training process without impacting final test accuracy 

- Datasets: CIFAR10, CIFAR100, ImageNet
- Networks: AlexNet, ResNet, GoogLeNet
- Up to 1.84x training time improvement with negligible loss in accuracy

• Extending training to bit-widths as low as 8-bit to leverage the low-precision capabilities 
of modern processing systems 

• Open source PyTorch implementation of the MuPPET framework with emulated 
quantised computations 
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Background: Mixed Precision Training

• Current state-of-the-art: Mixed-precision 
training (Micikevicius et al., 2018)

- Maintains master copy of the weights at 
FP32

- Quantises weights and activations to 
FP16 for all computations 

- Accumulates FP16 gradients into FP32 
master copy of the weights 

• Incurs accuracy drop if precision below 
FP16 is utilised

[6] Micikevicius, P. et.al.. Mixed Precision Training. In International Conference on Learning Representations (ICLR), 2018

[6]
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Multilevel optimisation formulation

• Hierarchical formulation that progressively increases precision of computations  

min
𝑤(𝑞¿¿ 𝑁)∈ℝ𝐷

𝐿𝑜𝑠𝑠¿ ¿¿

 

min
𝑤(𝑞¿¿ 𝑁−1)∈ℝ𝐷

𝐿𝑜𝑠𝑠¿ ¿¿

 

min
𝑤(𝑞¿¿ 𝑁−2)∈ℝ 𝐷

𝐿𝑜𝑠𝑠¿ ¿ ¿

 

min
𝑤𝐹𝑃 32∈ℝ𝐷

𝐿𝑜𝑠𝑠( 𝑓 (𝑤𝐹𝑃 32 )) 

⋱ 

Proposed policy decides at run time 
the epochs at which these changes 
need to be made

FP32 Master Copy of Weights

FP32 Master Copy of Weights
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Background: Gradient Diversity

• Yin et al. 2018 computes diversity between minibatches within an epoch

∆𝑆 (𝑤 )=

∑
𝑖=1

𝑛

‖∇ 𝑓 𝑖 (𝑤)‖2
2

‖∑
𝑖=1

𝑛

∇ 𝑓 𝑖 (𝑤)‖2
2=

∑
𝑖=1

𝑛

‖∇ 𝑓 𝑖(𝑤)‖2
2

∑
𝑖=1

𝑛

‖∇ 𝑓 𝑖 (𝑤)‖2
2
+∑
𝑖 ≠ 𝑗

¿∇ 𝑓 𝑖 (𝑤 ) ,∇ 𝑓 𝑗 (𝑤 )>¿¿

 

• Modified for MuPPET to compute diversity between minibatches across epochs 

∆𝑆 (𝑤 )
𝑗
=

1

¿ℒ∨¿ ∑
∀𝑙∈ℒ

∑
𝑘= 𝑗 −𝑟

𝑗

‖∇ 𝑓 𝑙
𝑘
(𝑤)‖2

2

‖ ∑
𝑘= 𝑗− 𝑟

𝑗

∇ 𝑓 𝑙
𝑘
(𝑤)‖2

2 ¿

 

Resolution of r epochs ≤ epoch j 

Gra dient of last minibatch 
for layer l in epoch k

Average gradient diversity across 
all layers from last r epochs

Gra dient of weights for minibatch i
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Precision Switching Policy: Methodology

𝑆 ( 𝑗 )={∆𝑆 (𝑤 )
𝑖 ∀𝑒≤𝑖≤ 𝑗 } 

𝑝=
max 𝑆( 𝑗)

∆𝑆 (𝑤 )
𝑗

 

• Every r epochs:

- The inter-epoch gradient diversity  is calculated

- Given an epoch e when the precision switched from level qn-1 to qn, and current epoch j

 

• Empirically chosen decaying threshold placed on p:

• If p violates T more than  times, a precision switch is triggered and 
 

  𝑇=𝛼+𝛽𝑒−𝜆 𝑗 
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Precision Switching Policy: Hypotheses

𝑝=
max 𝑆( 𝑗)

∆𝑆 (𝑤 )
𝑗

 Generalisability across epochs

• Intuition

- Low gradient diversity increases value of p 

- The likelihood of observing r gradients across r epochs that have low diversity at early stages of 
training is low 

- If this happens, may imply that information is being lost due to quantisation (high p value)

• Generalisability

Generalisability across networks and datasets
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Precision Switching Policy: Generalisability

• Similar values across various networks and datasets

• Decaying threshold accounts for volatility in early stages of training
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Precision Switching Policy: Adaptability

• Is it better than randomly switching? • Does it tailor to network and dataset?
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Precision Switching Policy: Performance (Accuracy)

• Nets
- AlexNet, ResNet18/20, GoogLeNet

• Datasets
- CIFAR10, CIFAR100 (Hyperparameter Tuning), ImageNet (Application)

• Precisions
- 8-, 12-, 14-, 16-bit Dynamic Fixed-Point (Emulated) and 32-bit Floating-Point

• Training with MuPPET matches accuracy of standard FP32 training when trained with identical SGD 
hyperparameters
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Quantised Training
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Quantisation

𝑥𝑞𝑢𝑎𝑛𝑡
{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 }=⌊ 𝑥{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 } ∙¿¿ 

Original value

Quantised signed INT
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Quantisation

𝑥𝑞𝑢𝑎𝑛𝑡
{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 }=⌊ 𝑥{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 } ∙¿¿ 

Original value

Quantised signed INT
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Quantisation

Scale factor
Weights

Activations
𝑠{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 }

=⌊ log2(min❑ (
𝑈𝐵+0.5
𝑋𝑚𝑎𝑥

{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 }
,
𝐿𝐵−0.5

𝑋𝑚𝑖𝑛
{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 })) ⌋

 

𝑥𝑞𝑢𝑎𝑛𝑡
{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 }=⌊ 𝑥{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 } ∙¿¿ 

Original value

Quantised signed INT
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Quantisation

Wordlength lower bound

Wordlength upper bound

Scale factor
Weights

Activations
𝑠{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 }

=⌊ log2(min❑ (
𝑈𝐵+0.5
𝑋𝑚𝑎𝑥

{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 }
,
𝐿𝐵−0.5

𝑋𝑚𝑖𝑛
{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 })) ⌋

 

𝑥𝑞𝑢𝑎𝑛𝑡
{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 }=⌊ 𝑥{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 } ∙¿¿ 

Original value

Quantised signed INT
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Quantisation

  and  

Wordlength lower bound

Wordlength upper bound

Scale factor
Weights

Activations
𝑠{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 }

=⌊ log2(min❑ (
𝑈𝐵+0.5
𝑋𝑚𝑎𝑥

{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 }
,
𝐿𝐵−0.5

𝑋𝑚𝑖𝑛
{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 })) ⌋

 

𝑥𝑞𝑢𝑎𝑛𝑡
{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 }=⌊ 𝑥{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 } ∙¿¿ 

Original value

Quantised signed INT

Quantisation configuration
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Quantisation

Network word length

Optimisation level

Current layer

Network layers

  and  

Quantisation configuration

Wordlength lower bound

Wordlength upper bound

Scale factor
Weights

Activations
𝑠{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 }

=⌊ log2(min❑ (
𝑈𝐵+0.5
𝑋𝑚𝑎𝑥

{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 }
,
𝐿𝐵−0.5

𝑋𝑚𝑖𝑛
{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 })) ⌋

 

𝑥𝑞𝑢𝑎𝑛𝑡
{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 }=⌊ 𝑥{𝑤𝑒𝑖𝑔h𝑡𝑠 ,𝑎𝑐𝑡 } ∙¿¿ 

Original value

Quantised signed INT
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Quantisation Emulation

• No ML framework support for reduced precision hardware
- e.g. NVIDIA Turing architecture

• GEMM profiled using NVIDIA's CUTLASS Library

• Training profiled through PyTorch
- Quantisation of weights, activations and gradients

- All gradient diversity calculations

• 12- and 14-bit fixed profiled as 16-bit fixed point
- Included for future custom precision hardware
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Performance (Wall-clock time)

Current Implementation
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Performance (Wall-clock time)

Ideal


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

