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Challenges & Our contributions
• Challenges:
• ML survival methods mainly focus on time-static features. (Ishwaran et al. 08; 

Ranganath et al. 16; Bellot & van der Schaar 18, 19; Lee et al. 19)
• Methods dealing with dynamic features are very sparse: 

• Non-parametric: kernel smoothing for low-dimensional covariate settings.
• Parametric: ‘flexsurv’ R package.
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Ranganath et al. 16; Bellot & van der Schaar 18, 19; Lee et al. 19)
• Methods dealing with dynamic features are very sparse: 

• Non-parametric: kernel smoothing for low-dimensional covariate settings.
• Parametric: ‘flexsurv’ R package.

• Contributions: 
1. First publicly available software for boosted hazard estimation with time-

dependent features.
https://github.com/BoXHED

2. Novel algorithmic implementation of Lee, Chen, Ishwaran “Boosted nonparametric 
hazards with time-dependent covariates” (2017)

https://github.com/BoXHED


Problem statement
Each participant 𝑖 is represented by a triplet (𝑋$ 𝑡 &∈ (,*+ , Δ$ , 𝑇$ ).
• 𝑋$ 𝑡 is a set of continuously-monitored features. 
• Δ$ is a binary event indicator: 1 for an uncensored instance and 0 for a censored 

instance. 
• 𝑇$ is the observed time, i.e.

𝑇$ = 2
Event bme if Δ$ = 1

Censoring bme if Δ$ = 0

Goal: Given above information of 𝑛 participants, we want to estimate log-hazard 
function 𝐹 𝑡, 𝑥 .



Loss function

• Loss function – negative log-likelihood.

𝑅 𝐹 =
1
𝑛
:
$;<

=

>
(

*+
𝑒@(&,A+ & )𝑑𝑡 − Δ$𝐹(𝑇$, 𝑋$ 𝑇$ )

• Challenge: Likelihood risk 𝑅(𝐹) is too complex to be optimized using 
traditional techniques. Solution provided in Lee, Chen, Ishwaran 17.
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3. Choose the split that minimized 𝑑.
• Choose subsequent splits to also minimize split score.

𝐴< 𝐴G

Trajectory Xi(t)
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Results

• Simulation data
• Framingham heart study data



Simulation Data

Four hazard functions (Pérez et al. 13)

0, 20, and 40 irrelevant features from standard normal distribution are 
added to above four hazards.

𝜆< 𝑡, 𝑥& = 𝐵𝑒𝑡𝑎 𝑡, 2, 2 ×𝐵𝑒𝑡𝑎 𝑥&, 2, 2 , 𝑡 ∈ 0, 1 ;

𝜆G 𝑡, 𝑥& = 𝐵𝑒𝑡𝑎 𝑡, 4, 4 ×𝐵𝑒𝑡𝑎 𝑥&, 4, 4 , 𝑡 ∈ 0, 1 ;

𝜆h 𝑡, 𝑥& =
1
𝑡
𝜙(log 𝑡 − 𝑥&)
Φ(𝑥& − log 𝑡)

, 𝑡 ∈ 0, 5 ;

𝜆l 𝑡, 𝑥& =
3
2
𝑡(.n exp −

1
2
cos 2𝜋𝑥& −

3
2
, 𝑡 ∈ 0, 5 .



Methods
Can handle time-
dependent features? Nonparametric? Variable selection Parameter tuning

BoXHED √ √ √ Cross-validated on 
training data

Kernel Smoothing √ √
Kernel bandwidth 
tuned directly to test 
data

FlexSurv √ √ Best parametric 
family for test data

Black-boost √

Best parametric 
family and 
#iterations for test 
data
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RMSE error

RMSE error with 95% confidence interval.

The kernel function is a beta 
density, resembling 𝜆< and 𝜆G. 

flexsurv is correctly 
specified for 𝜆h (log-normal 

distribution)



Time-dependent AUC

AUC versus time 𝑡 for the estimators when applied to data simulated from 𝜆<. Larger AUC values are better. 
Left: No irrelevant covariates; right: 20 irrelevant covariates.



Framingham heart study data

• 9,697 participants enrolled by 1975 with event follow-up through 
2017.
• Many features were measured repeatedly in physical exams almost 

every two years.
• Risk factors: age, gender, systolic blood pressure (SBP), diastolic blood 

pressure (DBP), total cholesterol (TC), smoking, diabetes, and BMI.
• Outcome: first occurrence of a CVD event.



Relationship between SBP and CVD

Conflicting clinical literature on how SBP affects CVD risk.
• CVD risk increases with SBP;
• CVD risk decreases with SBP, and then increases (U-shaped);
• some more complicated interaction patterns ...

BoXHED identified novel interaction effects that may partially explain 
these conflicting findings.



Estimated hazard by SBP



Novel clinical finding

• Hypotheses: The interaction effects SBP×BMI and SBP×Gender are 
responsible for the reported clinical findings on SBP and CVD risk.

• Validation: SBP×BMI interaction effect is validated using the 
conventional odds ratio analyses.



Conclusions
• BoXHED is first publicly available software for boosted hazard 

estimation that is
• completely nonparametric
• able to handle time-dependent features
• applicable to high-dimensional data

• Uncovered a novel interaction effect that may explain conflicting 
findings on CVD risk in clinical literature.

https://github.com/BoXHED

https://github.com/BoXHED
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