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Motivational Example

Noisy Mapping
X: Exam Score
Xq: True Ability Y: Data Label (0) or (1)
Yq: True Label Z: Protected Attribute (Gender, Race, etc.)

Construct Space Observed Space
No trade-off between accuracy
and fairness Accuracy-fairness trade-off in observed space
. — _ is due to noisier mappings for one group
Bayes optimal classifier achieves making the 0 and 1 labels “less separable”

fairness (Equal Opportunity)

Setup inspired from [Friedler et al. "16] [Yeom et al. "18]; Definition of Equal Opportunity [Hardt et al. ‘16] 2



Main Contributio
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Concept of Separability

Chernoff Information: approximation to
best error exponent in binary classification

Alleviate Trade-off in Real World

Gather knowledge from active data
collection, often improving separability

|deal Distributions

where accuracy and fairness are in
accord

* Explain the trade-off (Theorem 1)

 Compute fundamental limits
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Accuracy with respect to observed dataset is
a problematic measure of performance

* Proof of existence (Theorem 2) .
With analytical forms

Criterion to alleviate (Theorem 3)

* Interpretation e Compute alleviated trade-off
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These results also explain why
active fairness works

Plausible distributions in observed space,
or distributions in the construct space
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Preliminaries

Noisy Mapping For group Z=0, For group Z=1,
sk —— Xly=0z=0 ~ Po(x) X|y=0z=1 ~ Qo(x)
Y="1, Xly=1z=0 ~P1(x) Xly=12z=1 ~ Q1 (x)
X = fY,Z(Xa)
P
To(x) = log 109 =79 Ti(x) =log 1) =

Po(x) — Qo) — !

EQUAL OPPORTUNITY-> EQUAL Prob. of FN

Construct Space Observed Space

* Probability of False Negative(FN): Pry 1 (T,) = Pr(T,(x) < 1,|Y = 1,Z = z)
Wrongful Reject of True (+), i.e., True Y=1

* Probability of False Positive(FP): Ppp 1. (7,) = Pr(T,(x) = 7,|Y = 0,Z = z)
Wrongful Accept of True (—), i.e., True Y=0

* Probability of error: P, 7(t) = moPrp7(t) + 11 PRy 7(T)

Prior probabilities (assume g = m; = 1/2) 5



Quick Background on Chernoff Error Exponents

(

PFN,TZ (72) S e Chernoff exponents of probabilities of FN and FP
. (Larger exponent = lower error)

Pepr (T,) S e

Since P, r(7) = %PFP,T (r) + %PFN,T(T); we define (;alrger exponent
ower error

- higher accuracy)

the Chernoff exponent of overall error probability as
Eer, (t,) = min{EFN,TZ (72), Erpr, (72)}

Lemma: Chernoff exponent of error probability for Bayes optimal classifier
between distributions Py(x) under Y = 0 and P;(x) underY = 1:

Chernoff information C(Py, P;) = —log re%nu Y P, (x)*P; ()1~
a€lo,

[Cover & Thomas] 6



Our Proposition: Concept of Separability

* Definition of Separability: For a group of people with data
distributions Py(x) and P;(x) under hypothesesY = 0andY =1,
we define the separability as their Chernoff information C(P,, P;).

Geometric interpretability makes them tractable



log-generating function

Geometric understanding of the results

10N

I/’/'

For group Z2=0, ‘
Po(x)~N (1,1)  Po(®)
Pl (x)NN(411)

To(x) = 1 u=1

Ao(u) = log E(e”To(x)|Y =0,7 = 0) _
Al(u) = lOg E(euTo(x)|y =1,Z = 0) —

Erpr, (7o) = sup(uty — Ag(w))
u>0

Ern, (7o) = sup(uty — Ay (u))
u<o

Eer, (to) = min{EFN,TO (7o), Erpr, (7o)}




log-generating function
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Geometric understanding of the results

, Ay (U) Ay (u) For group Z=0, | | |
| | | | Po(x)~N (1,1) = P Pi(x)
1L i Pl(x)NN(411)
To(x)2T0 u=1 pu=4
O_
1 Ay(u) = log E(e”TO(x)|Y =0,Z=0) = ;u(u —1)
A (u) = log E(e”To(x)|Y =1,Z=0)= ;u(u + 1)

5 4 05 y0 05 1 15 Erpr (To) = sglg(uro — Ap(w))
u

Ern, (7o) = sup(uty — Ay (u))
u<o

Eer, (to) = min{EFN,TO (7o), Erpr, (7o)}




Geometric understanding of the results

S , A1 (u) Ag (u) For group Z=0, | | |
B | | | Po(x)~N (1,1) = P®) Pi(x)
§ h P;(x)~N(4,1)

?:D To(x) = 79 u=1 u=+4

= 0

g 1 IC(PO,Pl)AO(u) = log E(e¥o®|y =0,Z =0) = ;u(u - 1)

el I A 2SS A

g’o A (u) = log E(e”To(")|Y =1,Z=0)= ;u(u + 1)
oo -2 ' ' ' '

2 -1.5 -1 -0.5 u 0 0.5 1 1.5 EFP,TO (TO) — sup(uTO _ Ao(u))

u>0

E = — A
Epny = Epp = C(Py, P1) 7o (To) = Sup(uto = A1 (1))

Eer, (to) = min{EFN,TO (7o), Erpr, (7o)}
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log-generating function

Geometric understanding of the results

2 Al (u) Ao (U) For group 2=0, ‘ ‘ ’
' ' | Po(x) ~N (1,1) 7 Py(x) P (x)
A Py(x)~N(4,1)
TO(X)2T0 p=1 p=4
ol |
gpﬂ v L Ey Ic( ol 1) Ag(u) = log E(e*To@|y = 0,Z = 0) = ;u(u -1
1 QD ~ i
< ‘\.\\\ A (w) =1log E(e¥To®|y = 1,7 = 0) = ;u(u +1)
) ' ' ' | s
-1.5 -1 -0.5 u 0 0.5 1 1.5 EFP,TO (TO) — Sup(uTO _ Ao(u))

u>0

Ern, (7o) = sup(uty — Ay (u))
u<o

Eer, (to) = min{EFN,TO (7o), Erpr, (7o)}

11



Accuracy-fairness trade-off is due to difference in
separability of one group of people over another

Theorem 1 (informal): One of the following is true in observed space:

* Unbiased Mappings C(P,, P;) = C(Q,, Q1): Bayes optimal classifiers for both
groups also satisfy equal opportunity, i.e., Epy 1, (To) = Epy 1, (T1).

* Biased Mappings C(P,, P;) < C(Q,, Q,): Given two classifiers (one for each
group) that satisfy equal opportunity, for at least one of the groups it is not the
Bayes optimal classifier, i.e.,

Either E, 1 (t9) < C(Py, Py) or E¢ 1, (11) < C(Qyp, Q1) or both

12



Geometric understanding of the results

For group Z=0, we have Ery = Erp = C(Py, P1)

For group Z=1, we have Exy = Epp = C(Qyg, Q1)

4 For group Z=0,

Py(x)~N (1,1) Po(x) P (x) |
2r Pl(x)NN(4)1)

To(x) = 19 p=1 pu=4
0} |
05 Pl)

5 1) For group 7Z=1, |

Qo(x)~N (0,1) Qo (%) Q1 (%)
) Q(x)~N(4,1) *
1.5 -1 -0.5 0 0.5 1 1.5 T, (x) > 14 T —

Bayes optimal classifiers do not satisfy
Equal Opportunity (unequal Egy)

13



Geometric understanding of the results

For group Z=0,
PO(X) ~N (111)
| Pl(x)NN(4)1)

To(x) = 19

For group Z=1,
1 Qo(x)~N (0,1)
Q(x)~N(4,1)

Qo(x)

Q1 (x)

Tl (x) = 11

Eent, (To)= Epn, (T1)

u=20

p=4

sub-optimal for privileged group Z=1

Avoid active harm to privileged group?

Equal Opportunity (equal Egy) satisfied but

14



Geometric understanding of the results

For group Z=0,
PO(x) ~N (111)
i Pl(x)NN(4)1)

To(x) = 19

For group Z=1,
Qo(x)~N (0,1)
1 Q(x)~N(41)

Qo(x)

Q1 (x)

Tl (x) = 11

Eent, (To)= Epn, (T1)

u=20

p=4

For at least one of the groups, accuracy on given data is compromised for fairness.

Equal Opportunity (equal Egy) satisfied but
sub-optimal for unprivileged group Z=0

15



|deal distributions where accuracy and fairness are
iIn accord

Theorem 2 (informal): Fix Bayes optimal classifier for privileged group Z=1.
Then, for group Z=0, there exists ideal distributions of the forms

~ Po (2)(1=%) P (£} B () = _Po(@) ") Py (2)®
PO(x) - Ezoﬁ:zz)(l-w)l}(:fzz)w and P1 (37) Y. Po(z)(1=v) P (z)v

such that:

* Fairness on given data: The Bayes optimal classifier for the new distributions
is fair on given data (in fact it is the same classifier Ty (x) = 15 that was sub-
optimal but fair on the given data).

* Fairness and Optimal Accuracy on ideal data: On the ideal data, this Bayes
optimal classifier also has Epy= C(PO, Pl) = C(Qy, Q).

Proof of existence of ideal distributions (with analytical forms)

16



How to go about finding such ideal distributions?

min 7oD(Py|| Po) + w1 D(P; || P1)
Po, Py

such that, E #(0) = C(Qo, Q1)

where T;(x) = log gig; > 0 is the Bayes optimal classifier for the ideal distributions.
0

17



How to interpret these ideal distributions?

Biased Noisy Mapping For group Z=1,
——-_-_--_-- X — — ~
Y=Y, A ly=0,2=1 Qo(x)
N”*i( = fy7(Xg) Xly=1z=1 ~ Q1 (x)
N
Unbias NN‘N _
eq Map ~S For group Z=0,
Y=Y, Ping Xly=0z=0 ~ Po(x)
% = f2,(X,) Xly=1z=0 ~ P1 (x)
Construct Space P4 Observed Space

Plausible distributions in observed space under unbiased mappings, or
candidate distributions in the construct space under identity mappings
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When does active data collection alleviate the accuracy-
fairness trade-off in the real world?

X' : New feature collected for Z=0

X;X,|Y=o,z=o~Wo(x;x,) X:X’|Y=1,Z=O~W1(x»x’)

Theorem 3: The separability C(W,, W) is strictly greater than C(P,, P;) if and
only if the conditional mutual information I(X';Y|X,Z = 0) > 0.

Improving separability alleviates the accuracy-fairness trade-off in the real world

19



Accuracy (E 1, (To))

Numerical example: Exact computation of the trade-oft
1.4 x x x x
C(Wy, Wh)
1.2¢ .C(PQ,Pl)
17 BAYES OPTIMAL &
but UNFAIR on STOUP &=
0.8 existing data Po(x) ~N (1,1)
P1(x)~N(4,1)
0.6
0.4\ VFAIR but SUBOPTIMAL on existing BAYES OPTIMAL but
' data after data collection UNFAIR on existing data
after data collection
0.2 FAIR but SUBOPTIMAL For group Z=0,
glonexistingdata | | | Wo(x, x ) ~N ((1,1),I547)
0 0.2 0.4 0.6 0.8 1 W1 (x, x)~N((4,2), I2x2)

Decrease In

|E®N,1o (To) — ErN,r, (T1) Fairness 2



Ssummary

Provides new tools that go beyond explaining accuracy-fairness trade-off
Geometric interpretability helps exact quantification of this trade-off
Separability, ideal distributions and their connection to construct space
Criterion to alleviate the trade-off explains success of active fairness

Thank You!
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