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“Flat” clustering



“Flat” clustering

- Cluster analysis
- Features for machine learning
- Data compression
- etc.



Hierarchical clustering

● Recursive partitioning of the data
● n points → 2n-1 nested clusters with different granularities
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Agglomerative algorithms

● average-linkage, single-linkage, Ward’s method, complete-linkage, …
● Produce an embedding of a metric into an ultrametric
● Bottom-up: proceed by agglomerating the pair of clusters of minimum dissimilarity



Agglomerative algorithms

● average-linkage, single-linkage, Ward’s method, complete-linkage, …
● Produce an embedding of a metric into an ultrametric
● Bottom-up: proceed by agglomerating the pair of clusters of minimum dissimilarity

Major drawback: quadratic running time



Ultrametric

Goal: given some dataset, find eiciently 
its best ultrametric representation



Ultrametric

Goal: given some dataset, find eiciently 
its best ultrametric representation

wait… the best ?



Problem statement

BEST ULTRAMETRIC FIT (BUF
∞

)

INPUT: 
● a set V of n elements v1, v2, …, vn 
● a weight function w :  V× V→ R

OUTPUT:
● an ultrametric Δ such that 

w(vi, vj) ≤ Δ(vi, vj) ≤  𝛼 · w(vi, vj)

for the minimal value 𝛼.



Main results

Theorem 1 (upper bound)

There are algorithms that produce, for Euclidean instances of BUF∞ 
● For any γ>1, a 5γ-approximation in time O(nd+n1+O(1/γ^2)) 
● a √(log n)-approximation in time O(nd + n log2 n)
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Main results

Theorem 2 (lower bounds) -- informal statement

● Assuming the Strong Exponential Time Hypothesis 

(SETH), there is no algorithm running in subquadratic time 
that can approximate BUF∞ within a factor 3/2−o(1) for the 
L∞ norm

● + another lower bound for Euclidean metric under a 
“Colinearity Hypothesis”.
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SAT can’t be 
solved in 
2n(1−o(1))

Theorem 1 (upper bound)

There are algorithms that produce, for Euclidean instances of BUF∞ 
● For any γ>1, a 5γ-approximation in time O(nd+n1+O(1/γ^2)) 
● a √(log n)-approximation in time O(nd + n log2 n)



Related work

[CM10] (Carlsson and Mémoli) 
→ study of linkage algorithms

[Das15] (Dasgupta) 
 → what is a good hierarchical clustering? (cost functions)

[MW17] (Moseley and Wang) 
[CAKMTM18] (Cohen-Addad, Kanade, Mallmann-Trenn, Mathieu)

 → good approximation guarantees for average-linkage for the (dual of) Dasgupta’s cost function                  
      & new algorithms ‘beyond-worst-case’ scenario 

[CM15] (Cochez and Mou) 
[ACH19] (Abboud, Cohen-Addad, and Houdrouge)

 →  subquadratic running time implementation of average-linkage and Ward’s method

+ many others [RP16, CC17, CAKMT17, CCN19, CCNY18, ...]



Starting point 



Starting point 

● Solves a slightly more general problem
● Provides an algorithm that runs in O(n

2

) (given 
queries to w are done in constant time)

● This algorithm is optimal
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APPROX-BUF: an approximation algorithm for BUF∞

APPROX-BUF 

1. Compute a  γ-approximate MST T over 
the complete graph G

2. Compute a ẟ-estimate of the cut weights 
of the edges in T

3. Compute the cartesian tree 

→ This gives a γ · ẟ-approximation to BUF
∞

Based on γ-spanner constructions using 
Har-Peled, Indyk, Sidiropoulos

Any γ>1 γ = √(log n) 

Locality sensitive hash 

family (Andoni and 
Indyk)

Lipschitz partitions 

(Charikar et al.)

O(nd+n
1+O(1/γ^2)

) O(nd+n
 

log
2

 n)

Fast implementation in Euclidean space of 

dimension d



APPROX-BUF: an approximation algorithm for BUF∞

APPROX-BUF 

1. Compute a  γ-approximate MST T over 
the complete graph G

2. Compute a ẟ-estimate of the cut weights 
of the edges in T

3. Compute the cartesian tree

→ This gives a γ · 5-approximation to BUF
∞

Tweak a union-find data structure and compute 
bottom-up the cut weights

Fast implementation in Euclidean space of 

dimension d

ẟ=5  

Triangular inequality

O(nd+n log n)
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Experiments: maximum distortion

DIABETES MICE PENDIGITS

Average 11.1 9.7 27.5

Complete 18.5 11.8 33.8

Single 6.0 4.9 14

Ward 61.0 59.3 433.8

Approx-BUF 41.0 51.2 109.8

Approx-BUF2 9.6 9.4 37.2

Farach et al. 6.0 4.9 13.9

● DIABETES -- 768 samples, 8 features
● MICE -- 1080 samples, 77 features 
● PENDIGITS -- 10992 samples, 16 features

Approx-BUF: approx MST + approx 
cut weights

Approx-BUF2: exact MST + approx 
cut weights

𝜶 = maxvi,vj Δ(vi,vj)/w(vi,vj)



Experiments: running time

Running times, in seconds



Conclusion

● Seems promising

● A good MST is crucial → can we compute a better one efficiently?

● Cut weights suffer from an approximation of ẟ=5 → can we do better?



Thanks!


