
On Efficient Low Distortion Ultrametric
Embedding
Vincent Cohen-Addad -- CNRS & Google Zürich
Karthik C. S. -- Tel Aviv University
Guillaume Lagarde -- LaBRI

“Flat” clustering

“Flat” clustering

- Cluster analysis
- Features for machine learning
- Data compression
- etc.

Hierarchical clustering

● Recursive partitioning of the data
● n points → 2n-1 nested clusters with different granularities

Ultrametric

● Recursive partitioning of the data
● n points → 2n-1 nested clusters with different granularities

Ultrametric

Metric where:

Triangle inequality
d(x,z) ≤ d(x,y) + d(y,z)

is strengthened to

Ultrametric inequality

d(x,z) ≤ max(d(x,y), d(y,z))

150

100
111

34

14
4111

Ultrametric

● Recursive partitioning of the data
● n points → 2n-1 nested clusters with different granularities

Ultrametric

Metric where:

Triangle inequality
d(x,z) ≤ d(x,y) + d(y,z)

is strengthened to

Ultrametric inequality

d(x,z) ≤ max(d(x,y), d(y,z))

150

100
111

34

14
4111

d(x,y) = value of the lowest common ancestor

Ultrametric

● Recursive partitioning of the data
● n points → 2n-1 nested clusters with different granularities

Ultrametric

Metric where:

Triangle inequality
d(x,z) ≤ d(x,y) + d(y,z)

is strengthened to

Ultrametric inequality

d(x,z) ≤ max(d(x,y), d(y,z))

150

100
111

34

14
4111

d(x,y) = value of the lowest common ancestor

Agglomerative algorithms

● average-linkage, single-linkage, Ward’s method, complete-linkage, …
● Produce an embedding of a metric into an ultrametric
● Bottom-up: proceed by agglomerating the pair of clusters of minimum dissimilarity

Agglomerative algorithms

● average-linkage, single-linkage, Ward’s method, complete-linkage, …
● Produce an embedding of a metric into an ultrametric
● Bottom-up: proceed by agglomerating the pair of clusters of minimum dissimilarity

Major drawback: quadratic running time

Ultrametric

Goal: given some dataset, find eiciently
its best ultrametric representation

Ultrametric

Goal: given some dataset, find eiciently
its best ultrametric representation

wait… the best ?

Problem statement

BEST ULTRAMETRIC FIT (BUF
∞

)

INPUT:
● a set V of n elements v1, v2, …, vn
● a weight function w : V× V→ R

OUTPUT:
● an ultrametric Δ such that

w(vi, vj) ≤ Δ(vi, vj) ≤ 𝛼 · w(vi, vj)

for the minimal value 𝛼.

Main results

Theorem 1 (upper bound)

There are algorithms that produce, for Euclidean instances of BUF∞
● For any γ>1, a 5γ-approximation in time O(nd+n1+O(1/γ^2))
● a √(log n)-approximation in time O(nd + n log2 n)

V = R
d

w(v
i

, v
j

) = ||v
i

 - v
j

||
2

Main results

Theorem 2 (lower bounds) -- informal statement

● Assuming the Strong Exponential Time Hypothesis

(SETH), there is no algorithm running in subquadratic time
that can approximate BUF∞ within a factor 3/2−o(1) for the
L∞ norm

● + another lower bound for Euclidean metric under a
“Colinearity Hypothesis”.

V = R
d

w(v
i

, v
j

) = ||v
i

 - v
j

||
2

SETH

w(v
i

, v
j

) = ||v
i

 - v
j

||
∞

SAT can’t be
solved in
2n(1−o(1))

Theorem 1 (upper bound)

There are algorithms that produce, for Euclidean instances of BUF∞
● For any γ>1, a 5γ-approximation in time O(nd+n1+O(1/γ^2))
● a √(log n)-approximation in time O(nd + n log2 n)

Related work

[CM10] (Carlsson and Mémoli)
→ study of linkage algorithms

[Das15] (Dasgupta)
 → what is a good hierarchical clustering? (cost functions)

[MW17] (Moseley and Wang)
[CAKMTM18] (Cohen-Addad, Kanade, Mallmann-Trenn, Mathieu)

 → good approximation guarantees for average-linkage for the (dual of) Dasgupta’s cost function
 & new algorithms ‘beyond-worst-case’ scenario

[CM15] (Cochez and Mou)
[ACH19] (Abboud, Cohen-Addad, and Houdrouge)

 → subquadratic running time implementation of average-linkage and Ward’s method

+ many others [RP16, CC17, CAKMT17, CCN19, CCNY18, ...]

Starting point

Starting point

● Solves a slightly more general problem
● Provides an algorithm that runs in O(n

2

) (given
queries to w are done in constant time)

● This algorithm is optimal

APPROX-BUF: an approximation algorithm for BUF∞

APPROX-BUF

APPROX-BUF: an approximation algorithm for BUF∞

APPROX-BUF

1. Compute a γ-approximate MST T over
the complete graph G

APPROX-BUF: an approximation algorithm for BUF∞

APPROX-BUF

1. Compute a γ-approximate MST T over
the complete graph G

2. Compute a ẟ-estimate of the cut weights
of the edges in T

APPROX-BUF: an approximation algorithm for BUF∞

APPROX-BUF

1. Compute a γ-approximate MST T over
the complete graph G

2. Compute a ẟ-estimate of the cut weights
of the edges in T

a
b

APPROX-BUF: an approximation algorithm for BUF∞

APPROX-BUF

1. Compute a γ-approximate MST T over
the complete graph G

2. Compute a ẟ-estimate of the cut weights
of the edges in T

L R

a
b

APPROX-BUF: an approximation algorithm for BUF∞

APPROX-BUF

1. Compute a γ-approximate MST T over
the complete graph G

2. Compute a ẟ-estimate of the cut weights
of the edges in T

L R

a
b

84

APPROX-BUF: an approximation algorithm for BUF∞

APPROX-BUF

1. Compute a γ-approximate MST T over
the complete graph G

2. Compute a ẟ-estimate of the cut weights
of the edges in T

117

13

10 43

50
23

61

80 8

APPROX-BUF: an approximation algorithm for BUF∞

APPROX-BUF

1. Compute a γ-approximate MST T over
the complete graph G

2. Compute a ẟ-estimate of the cut weights
of the edges in T

3. Compute the cartesian tree

117

13

10 43

50
23

61

80 8

APPROX-BUF: an approximation algorithm for BUF∞

APPROX-BUF

1. Compute a γ-approximate MST T over
the complete graph G

2. Compute a ẟ-estimate of the cut weights
of the edges in T

3. Compute the cartesian tree

117

13

10 43

50
23

61

80 8

APPROX-BUF: an approximation algorithm for BUF∞

APPROX-BUF

1. Compute a γ-approximate MST T over
the complete graph G

2. Compute a ẟ-estimate of the cut weights
of the edges in T

3. Compute the cartesian tree

117

13

10 43

50
23

61

80 8

117

APPROX-BUF: an approximation algorithm for BUF∞

APPROX-BUF

1. Compute a γ-approximate MST T over
the complete graph G

2. Compute a ẟ-estimate of the cut weights
of the edges in T

3. Compute the cartesian tree

→ This gives a γ · ẟ-approximation to BUF
∞

117

13

10 43

50
23

61

80 8

117

APPROX-BUF: an approximation algorithm for BUF∞

APPROX-BUF

1. Compute a γ-approximate MST T over
the complete graph G

2. Compute a ẟ-estimate of the cut weights
of the edges in T

3. Compute the cartesian tree

→ This gives a γ · ẟ-approximation to BUF
∞

Based on γ-spanner constructions using
Har-Peled, Indyk, Sidiropoulos

Any γ>1 γ = √(log n)

Locality sensitive hash

family (Andoni and
Indyk)

Lipschitz partitions

(Charikar et al.)

O(nd+n
1+O(1/γ^2)

) O(nd+n

log
2

 n)

Fast implementation in Euclidean space of

dimension d

APPROX-BUF: an approximation algorithm for BUF∞

APPROX-BUF

1. Compute a γ-approximate MST T over
the complete graph G

2. Compute a ẟ-estimate of the cut weights
of the edges in T

3. Compute the cartesian tree

→ This gives a γ · 5-approximation to BUF
∞

Tweak a union-find data structure and compute
bottom-up the cut weights

Fast implementation in Euclidean space of

dimension d

ẟ=5

Triangular inequality

O(nd+n log n)

THEORY

REAL LIFE

THEORY

REAL LIFE

Experiments: maximum distortion

DIABETES MICE PENDIGITS

Average 11.1 9.7 27.5

Complete 18.5 11.8 33.8

Single 6.0 4.9 14

Ward 61.0 59.3 433.8

Approx-BUF 41.0 51.2 109.8

Approx-BUF2 9.6 9.4 37.2

Farach et al. 6.0 4.9 13.9

● DIABETES -- 768 samples, 8 features
● MICE -- 1080 samples, 77 features
● PENDIGITS -- 10992 samples, 16 features

Approx-BUF: approx MST + approx
cut weights

Approx-BUF2: exact MST + approx
cut weights

𝜶 = maxvi,vj Δ(vi,vj)/w(vi,vj)

Experiments: running time

Running times, in seconds

Conclusion

● Seems promising

● A good MST is crucial → can we compute a better one efficiently?

● Cut weights suffer from an approximation of ẟ=5 → can we do better?

Thanks!

