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“Flat” clustering



“Flat” clustering

- Cluster analysis

- Features for machine learning
- Data compression

- etc.




Hierarchical clustering

® Recursive partitioning of the data
® n points — 2n-1 nested clusters with different granularities
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Agglomerative algorithms

® average-linkage, single-linkage, Ward’s method, complete-linkage, ...
® Produce an embedding of a metric into an ultrametric
® Bottom-up: proceed by agglomerating the pair of clusters of minimum dissimilarity



Agglomerative algorithms

® average-linkage, single-linkage, Ward’s method, complete-linkage, ...
® Produce an embedding of a metric into an ultrametric
® Bottom-up: proceed by agglomerating the pair of clusters of minimum dissimilarity

Major drawback: quadratic running time



Ultrametric

Goal: given some dataset, find efficiently
its best ultrametric representation



Ultrametric

Goal: given some dataset, find efficiently
its best ultrametric representation

wait... the best ?



Problem statement

BEST ULTRAMETRIC FIT (BUF )

INPUT:

® aset V of n elements ViV ey Vo

® aweight function w: Vx V- R

OUTPUT:
® an ultrametric A such that

wi(v, Vj) < Alv, Vj) < a-wv, Vj)

for the minimal value a.



Main results

V=R4 Theorem 1 (upper bound)

There are algorithms that produce, for Euclidean instances of BUF__
e Foranyy>1,a5y-approximation in time O(nd+n'*01/7"?)
W(Vi, Vj) = IIVi . lel2 e a4/(log n)-approximation in time O(nd + n log” n)



Main results

V=R¢ Theorem 1 (upper bound)
There are algorithms that produce, for Euclidean instances of BUF
e Foranyy>1,a5y-approximation in time O(nd+n'*01/7"?)
W(Vi, Vj) = IIVi . lel2 e a4/(log n)-approximation in time O(nd + n log” n)

SAT can’t be

solved in
2n(1—0(1))

Theorem 2 (lower bounds) -- informal statement

® Assuming the Strong Exponential Time Hypothesis
SETH . : o o
(SETH), there is no algorithm running in subquadratic time
that can approximate BUF__ within a factor 3/2-0(1) for the
L _norm
® + another lower bound for Euclidean metric under a
“Colinearity Hypothesis”.
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Starting point

Algorithmica (1995) 13: 155-179 . .
ot ! Algorithmica

© 1995 Springer-Verlag New York Inc.

A Robust Model for Finding Optimal Evolutionary Trees

M. Farach,! S. Kannan,? and T. Warnow?

Abstract. Constructing evolutionary trees for species sets is a fundamental problem in computational
biology. One of the standard models assumes the ability to compute distances between every pair of
species, and seeks to find an edge-weighted tree T in which the distance dz in the tree between the
leaves of T corresponding to the species i and j exactly equals the observed distance, d;;. When such
a tree exists, this is expressed in the biological literature by saying that the distance function or matrix
is additive, and trees can be constructed from additive distance matrices in O(n?) time. Real distance
data is hardly ever additive, and we therefore need ways of modeling the problem of finding the best-fit
tree as an optimization problem.

In this paper we present several natural and realistic ways of modeling the inaccuracies in the
distance data. In one model we assume that we have upper and lower bounds for the distances between
pairs of species and try to find an additive distance matrix between these bounds. In a second model
we are given a partial matrix and asked to find if we can fill in the unspecified entries in order to
make the entire matrix additive. For both of these models we also consider a more restrictive problem
of finding a matrix that fits a tree which is not only additive but also ultrametric. Ultrametric matrices
correspond to trees which can be rooted so that the distance from the root to any leaf is the same.
Ultrametric matrices are desirable in biology since the edge weights then indicate evolutionary time.
We give polynomial-time algorithms for some of the problems while showing others to be NP-complete.
We also consider various ways of “fitting” a given distance matrix (or a pair of upper- and lower-bound
matrices) to a tree in order to minimize various criteria of error in the fit. For most criteria this
optimization problem turns out to be NP-hard, while we do get polynomial-time algorithms for some.
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® Solves a slightly more general problem

® Provides an algorithm that runs in O(n?) (given
queries to w are done in constant time)

® This algorithm is optimal
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— This gives a y - -approximation to BUF _




APPROX-BUF: an approximation algorithm for BUF_

Fast implementation in Euclidean space of
dimension d

: : APPROX-BUF
Based on y-spanner constructions using

Har-Peled, Indyk, Sidiropoulos :
1. Compute a y-approximate MST T over

the complete graph G
Any 7>1 Y =+/(log n) 2.  Compute a []-estimate of the cut weights
of the edges in T

Locality sensitive hash | Lipschitz partitions )
Y P p 3. Compute the cartesian tree

family (Andoni and | (Charikar et al.)
Indyk)

- — This gives a y - -approximation to BUF _
O(nd+n'0Wr'2) O(nd+n log? n)



APPROX-BUF: an approximation algorithm for BUF_

Fast implementation in Euclidean space of
dimension d

Tweak a union-find data structure and compute APPROX-BUF

bottom-up the cut weights ,
1. Compute a y-approximate MST T over

the complete graph G
0=5 2. Compute a [ |-estimate of the cut weights
of the edges in T

Triangular inequalit )
8 1 Y 3. Compute the cartesian tree

O(nd+n log n)
— This gives a ¥ - 5-approximation to BUF
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Experiments: maximum distortion

e DIABETES -- 768 samples, 8 features
e MICE -- 1080 samples, 77 features

e PENDIGITS -- 10992 samples, 16 features

Approx-BUF2

9.6

9.4

DIABETES MICE PENDIGITS
Average 11.1 9.7 27.5
Complete 18.5 11.8 33.8
Single 6.0 4.9 14
Ward 61.0 59.3 433.8

37.2

Farach et al.

6.0

4.9

13.9

—> o =max A(Vi,Vj)/ W(Vi,Vj)

Approx-BUF: approx MST + approx
cut weights

Approx-BUF2: exact MST + approx
cut weights



Experiments: running time

107

101 B

1072 A

average 5.81 o 5.52
complete
single

ward
approxBUF

0.01 0.01 0.01 0.01 0.01

DIABETES MICE PENDIGITS

Running times, in seconds



Conclusion

® Seems promising

® A good MST is crucial —» can we compute a better one efficiently?

e Cut weights suffer from an approximation of [1=5 — can we do better?



Thanks!



