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» Drug discovery: finding molecules with desired chemical properties
» A good drug needs to satisfy multiple objectives
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» Drug discovery: finding molecules with desired chemical properties
» A good drug needs to satisfy multiple objectives

: . : : . Property 1
» Multi-property optimization is challenging! )
o Zero-shot

- Many examples of molecules with a single property o n generation

- Few instances of molecules that satisfy multiple °,

property constraints

- Challenge: How do we find compounds that
satisfy all the criteria with few (or zero) examples
of such molecules? 8

> Property 2



Formulation: Reinforcement Learning (RL)

» De novo drug design using generative models

» The model learns to generate new drugs that satisfy all the property constraints
» Example: Design dual inhibitor (GSK3/ + JNK3) to treat Alzheimers disease

» Maximize the reward using RL: reward(x) = GSK3/(x) + JNK3(x)
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Challenge: Sparsity of Rewards

» De novo drug design using generative models
» The model learns to generate new drugs that satisfy all the property constraints

» Example: Design dual inhibitor (GSK3/ + JNK3) to treat Alzheimers disease
» Maximize the reward using RL: reward(x) = GSK3/(x) + JNK3(x)

918.50/0 O7.4%
» Challenge: reward sparsity SEINVENT
- We tested REINVENT (Olivecrona et al.), a o 9°
state-of-the-art RL method for drug design rft“ 06
) ' 47.9°/o
O
- The more property constraints, the harder § -
for RL to get positive rewards D 55
2 4
Olivecrona et al., “Molecular de-novo design through deep reinforcement learning”, Number of Constraints

Journal of Cheminformatics (2017)



» Molecules are often generated via an autoregressive process:

- In each step, the model adds one atom to the molecule
- Reward are evaluated at the very end
- Requires a lot of steps to complete a molecule!

*—9
‘\ ///\\\ //
./ ‘ ..... > »— ----- > >—J ----- > >——J/ ----- > >——(( ----- > >—@ ----- >
0<‘> N N N N S N S
Generative Autoregressive process
Model (many generation steps)

Challenge: Sparsity of Rewards

}@ GSK3f = 0.9

Reward evaluated
at the end.



Hierarchical Reinforcement Learning

» Maximize the reward using RL: reward(x) = GSK3/(x) + JNK3(x)

» Learn property-specific rationales — subgraphs active to GSK3/ or JNK3
individually.

» Rationales play similar roles to options in hierarchical RL (Sutton et al., 1999)
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Sutton et al., Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2): 181-211, 1999.



Hierarchical Reinforcement Learning

» Maximize the reward using RL: reward(x) = GSK3/(x) + JNK3(x)

» Learn property-specific rationales — subgraphs active to GSK3/ or JNK3
individually.

» Rationales provide faster feedbacks and alleviate reward sparsity issue
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Sutton et al., Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2): 181-211, 1999.



Model Components
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Property Predictors

» To quickly evaluate the property of generated compounds, we train a property
predictor over reference drugs with measured properties.

» This strategy is commonly adopted for drug de novo design (Olivecrona et al.,
2017; Popova et al., 2018)

» The property predictor is fixed when training the generative model.

drug name structure active

COLISTIN SULFATE CCC(C)CCCC(=0)NC(CCN 1

CHLORHEXIDINE DIHYDROCHLORIDE CI.CI.NC(=NCCCCCCN=C| 0

GEMIFLOXACIN MESYLATE CON=C1CN(c2nc3c(cc2 0

PYRITHIONE ZINC [O-]n1lcccecl=S.[0-]nlc 0

CLEROCIDIN equilibrates in solution CC1CCC2(C)C(C=0)=CCC 1 # Property predictor
BENZETHONIUM CHLORIDE CC(C)(C)CC(C)(C)cleee(! 1

CEFPIRAMIDE Cclcc(=0)c(C(=O)NC(C( 0

SARAFLOXACIN HYDROCHLORIDE  Cl.0=C(O)clcn(-c2ccc(F 0

GATIFLOXACIN COc1c(N2CCNC(C)C2)c( 0

Reference drugs

Popova et al., "Deep reinforcement learning for de novo drug design." Science advances (2018)



Model Components
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Rationale Extraction

» In most cases, rationales are not provided to our models
» How to discover such rationales without direct supervision?



Rationale Extraction via Model Interpretation

» Our goal: given a molecule G, find a minimal subgraph S such that S retains
desired property scores

» Extract rationales from active molecules in the training set
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Rationale Extraction via Model Interpretation

» Our goal: given a molecule G, find a minimal subgraph S such that S retains
desired property scores

» Extract rationales from active molecules in the training set

O
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Find Rationales by Monte Carlo Tree Search

» Our goal: given a molecule G, find a . o N
minimal Subgraph S such that S retains Peripheral | Br N/\O" Peripheral
desired property scores bond HoN ing

O

Br
N %

» How to solve this?

- Iteratively remove peripheral bonds and
rings to find subgraph S

- Evaluate each subgraph using the (fixed)
property predictor

- Q and U functions are MCTS parameters that
guides the search process

- MCTS is much faster than exhaustive search.



Find Rationales by Monte Carlo Tree Search

» Our goal: given a molecule G, finda /o L
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Find Rationales by Monte Carlo Tree Search

» Our goal: given a molecule G, finda /o L

minimal Subgraph S such that S retains Perlpheral d Perlpheral
desired property scores bona &O ring
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O
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- Q and U functions are MCTS parameters that
guides the search process
- MCTS is much faster than exhaustive search.



Find Rationales by Monte Carlo Tree Search

» Our goal: given a molecule G, finda /o L

minimal Subgraph S such that S retains Perlpheral d Perlpheral
desired property scores bona &O ring

O
By max\ O+U
N/\O
" geanllices
» How to solve this?

- Iteratively remove peripheral bonds and 0+ U/max\
rings to find subgraph S

O
- Evaluate each subgraph using the (fixed)
property predictor @é @ﬁﬁ?ﬂ@ ©)L§/\

Q and U functions are MCTS parameters that
guides the search process Predict property
- MCTS is much faster than exhaustive search.
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Molecule Completion

» Rationales are “partial” molecules

» We need to complete them into a full molecule
- Rationales from different properties are disconnected.

» Learn a molecule completion model P(G|S) to connect the rationales.
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Molecule Completion

» We model P(G|S) as an autoregressive process

» For simplicity, we use a simple atom-by-atom molecule completion model
- More advanced architectures are certainly beneficial

» In each step, we add an atom to the current molecule, and predict its
associated bonds

o
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Molecule Completion

» We model P(G|S) as an autoregressive process

» For simplicity, we use a simple atom-by-atom molecule completion model
- More advanced architectures are certainly beneficial

» In each step, we add an atom to the current molecule, and predict its
associated bonds
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Molecule Completion

» We model P(G|S) as an autoregressive process

» For simplicity, we use a simple atom-by-atom molecule completion model
- More advanced architectures are certainly beneficial

» In each step, we add an atom to the current molecule, and predict its
associated bonds
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Molecule Completion

» We model P(G|S) as an autoregressive process

» For simplicity, we use a simple atom-by-atom molecule completion model
- More advanced architectures are certainly beneficial

» In each step, we add an atom to the current molecule, and predict its
associated bonds
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Molecule Completion

» We model P(G|S) as an autoregressive process

» For simplicity, we use a simple atom-by-atom molecule completion model
- More advanced architectures are certainly beneficial

» In each step, we add an atom to the current molecule, and predict its
associated bonds
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Molecule Completion

» We model P(G|S) as an autoregressive process

» For simplicity, we use a simple atom-by-atom molecule completion model
- More advanced architectures are certainly beneficial

» In each step, we add an atom to the current molecule, and predict its
associated bonds
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Molecule Completion

» We model P(G|S) as an autoregressive process

» For simplicity, we use a simple atom-by-atom molecule completion model
- More advanced architectures are certainly beneficial

» In each step, we add an atom to the current molecule, and predict its
associated bonds
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Molecule Completion

» We model P(G|S) as an autoregressive process

» For simplicity, we use a simple atom-by-atom molecule completion model
- More advanced architectures are certainly beneficial

» In each step, we add an atom to the current molecule, and predict its
associated bonds
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Pre-training Molecule Completion

» Molecule completion model can be trained without “property” predictors
» Pre-train molecule completion on a large set of unlabeled molecules (e.g., ChEMBL)

Molecule from ChEMBL



Pre-training Molecule Completion

» Molecule completion model can be trained without “property” predictors
» Pre-train molecule completion on a large set of unlabeled molecules (e.g., ChEMBL)
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Pre-training Molecule Completion

» Molecule completion model can be trained without “property” predictors
» Pre-train molecule completion on a large set of unlabeled molecules (e.g., ChEMBL)

Randomly select

a subgraph . . Training example ) .
@ N/_\N @ N/_\N — @ N/_\N )_/7
- __/ ” ___/

Molecule from ChEMBL
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Putting everything together

Rationales Property Predictor
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Putting everything together

Rationales Property Predictor
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Putting everything together

Rationales Property Predictor
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Maximize expected reward: R = ZGR(G)P(G) + AH[P(S)]
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Experiments

» Three evaluation metrics
- we do not explicitly train the model to optimize these metrics, except success rate
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» Three evaluation metrics
- we do not explicitly train the model to optimize these metrics, except success rate

» Success rate:

- How often do generated molecules satisfy all the property constraints?
- Following Olivecrona et al., we use property predictors to compute this metric

» Diversity:
_ Average pairwise molecular distance: nydist(X, Y)

» Novelty:

- We don’t want to rediscover existing drugs known to satisfy all the constraints.
- A molecule G is novel if dist(G, G,y) > 0.6, where G,, is its nearest neighbor in the
training set (i.e., not similar to any of the drugs)



Single Constraint: JNK3 Inhibitor Design

» We compare with two state-of-the-art RL methods
- GCPN (You et al., 2018)
- REINVENT (Olivecrona et al., 2017)

» Our model achieves the best success rate and novelty score

B GCPN
B REINVENT
. Ours

Success Novelty Diversity

You et al., Graph convolutional policy network for goal-directed molecular graph generation. NeurlPS 2018



Two Constraints: GSK3/JNK3 Dual Inhibitor

» Jointly inhibiting JNK3 and GSK3/ can be beneficial for treating Alzheimers
disease [1]

» Property predictors are trained over the dataset from Li et al., 2018 [1]
» Our model achieves the best result across all the three metrics.

100

O)d. 4. B GCPN

- B REINVENT
(O . Ours

Success Novelty Diversity

[1] Li et al., Multi-objective de novo drug design with conditional graph generative model. Journal of Cheminformatics, 2018.



Four Constraints: GSK3 + JNK3 + QED + SA

» Jointly inhibiting JNK3 and GSK3/ can be beneficial for treating Alzheimers

» We further require generated dual inhibitors to be drug like (QED > 0.6) and
synthetically accessible (SA < 4.0)

» Our model significantly outperforms REINVENT (esp. success rate)

B REINVENT M Ours ® @\

Success Novelty Diversity

Generated compounds



Are the rationales chemically meaningful?
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Are the rationales chemically meaningful?

» The extracted rationales should accurately explain the property of interest

» As there is no ground truth rationales for GSK3, JNK3, we construct a toxicity
dataset to evaluate rationale extraction module.

» We construct a toxicity dataset where a molecule is labeled as toxic if it contains
structural alerts (Sushko et al., 2012)
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Are the rationales chemically meaningful?

» The extracted rationales should accurately explain the property of interest

» As there is no ground truth rationales for GSK3, JNK3, we construct a toxicity
dataset to evaluate rationale extraction module.

» We construct a toxicity dataset where a molecule is labeled as toxic if it contains
structural alerts (Sushko et al., 2012)

» We train a graph convolutional network and use MCTS to extract rationales
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Are the rationales chemically meaningful?

» The extracted rationales should accurately explain the property of interest

» As there is no ground truth rationales for GSK3, JNK3, we construct a toxicity
dataset to evaluate rationale extraction module.

» We construct a toxicity dataset where a molecule is labeled as toxic if it contains
structural alerts (Sushko et al., 2012)

» We train a graph convolutional network and use MCTS to extract rationales
» The extracted rationales should match the structural alerts
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|l |l

ST O S— 0

| |

Structural alert Extracted rationale



Are the rationales chemically meaningful?

» The extracted rationales should accurately explain the property of interest

» As there is no ground truth rationales for GSK3, JNK3, we construct a toxicity
dataset to evaluate rationale extraction module.

» We construct a toxicity dataset where a molecule is labeled as toxic if it contains
structural alerts (Sushko et al., 2012)

» We train a graph convolutional network and use MCTS to extract rationales
» The extracted rationales should match the structural alerts

Method Partial Match  Exact Match

Integrated Gradient 0.857 39.4%
MCTS Rationale 0.361 46.0 %




Are the property predictors reliable?

» We use a property predictor to evaluate the generated compounds.

» However, generated compounds can be far away from the drugs used to train
the property predictor — predicted properties may not be reliable!

Reference drugs

(Generated
molecules




» We use a property predictor to evaluate the property of generated compounds

» However, generated compounds can be far away from the drugs used to train
the property predictor — that's why rationales are useful!

» Molecules generated from rationales are closer to reference drugs

Reference drugs
Generated molecules
using rationales

[1] Preuer et al. Frechet ChemNet distance: a metric for generative models for molecules in drug discovery



Rationale encourage reliability

» We use a property predictor to evaluate the property of generated compounds

» However, generated compounds can be far away from the drugs used to train
the property predictor — that's why rationales are useful!

» Molecules generated from rationales are closer to reference drugs

FCD metric on JNK3 Reference drugs -
% O O

(Generated molecules

B REINVENT using rationales

B Ours

FCD (lower the better)

FCD measures distributional discrepancy between
generated molecules and training set [1]

[1] Preuer et al. Frechet ChemNet distance: a metric for generative models for molecules in drug discovery



» Molecular graph generation is particularly challenging due to multiple constraints
» In this paper, we propose hierarchical RL based on rationales
» Our model works better than previous state-of-the-art RL methods

» Methods can be further enhanced using advanced generative architectures
- Instead of atom-by-atom generation, we can generate molecules based on substructures

- Jin et al., Hierarchical Generation of Molecular Graph using Structural Motifs. ICML 2020
- (poster ID 2743)



