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‣ Drug discovery: finding molecules with desired chemical properties 
‣ The primary challenge: large search space

Drug Discovery via Generative Models

Search Find1030

Potential candidates Remdesivir?

Criterion: 
• Safe 
• Cures COVID



‣ Generative models can be used to efficiently search in the chemical space 
‣ Given a specified criterion, the model generates a molecule with desired 

properties.

Drug Discovery via Generative Models

Condition Generate

Remdesivir

Criterion: 
• Safe 
• Cures COVID

Generative Model



‣ Consider connected graphs… 
‣ Different type of graphs require different generation method. 
‣ What kind of generation method is suitable for molecules?

Molecular Graph Generation

Complexity

Line graph 
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(Images)

Fully connected 
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Previous Methods for Molecule Generation
‣ Atom based methods: CG-VAE (Liu et al. 2018), DeepGMG (Li et al. 2018), 

GraphRNN (You et al. 2018), and more
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Previous Methods for Molecule Generation
‣ Atom based methods: CG-VAE (Liu et al. 2018), DeepGMG (Li et al. 2018), 

GraphRNN (You et al. 2018), and more 
‣ Substructure based methods: JT-VAE (Jin et al., 2018) 

- Incorporating inductive bias (i.e., low tree-width) into generation 
- Each time generate a cycle or edge
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Previous methods: limitation
‣ Atom based methods: CG-VAE (Liu et al. 2018), DeepGMG (Li et al. 2018), 

GraphRNN (You et al. 2018), and more 
‣ Substructure based methods: JT-VAE (Jin et al., 2018)
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Previous methods: limitation
‣ Atom based methods: CG-VAE (Liu et al. 2018), DeepGMG (Li et al. 2018), 

GraphRNN (You et al. 2018), and more 
‣ Substructure based methods: JT-VAE (Jin et al., 2018)
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Large molecules 
(e.g., peptides, polymers)



Failure in Generating Large Molecules
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70 atom predictions 
+ 70 bond predictions

‣ Atom based methods: CG-VAE (Liu et al. 2018), DeepGMG (Li et al. 2018), 
GraphRNN (You et al. 2018), and more 

‣ Many Generation Steps: Vanishing gradient + error accumulation



Failure in Generating Large Molecules
‣ Atom based methods: CG-VAE (Liu et al. 2018), DeepGMG (Li et al. 2018), 

GraphRNN (You et al. 2018), and more 
‣ Substructure based methods: JT-VAE (Jin et al., 2018) 

‣ JT-VAE decoder requires each substructure neighborhood to be assembled in 
one go, making it combinatorially challenging to handle large substructures.
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Larger Building Blocks: Motifs
‣ JT-VAE only considered single rings and bonds as building blocks 
‣ How about using larger building blocks — motifs with flexible structures, not 

restricted to rings and bonds?  
‣ Large molecules such as polymers exhibit clear hierarchical structure, being 

built from repeated structural motifs.
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this polymer structure. 



NLP Analogy
‣ Atom-based generation == character-based generation 
‣ Substructure-based generation == word-based generation 
‣ Motif-based generation == phrase-based generation

‣ Substructures  
‣ (ring and bond only) 
‣ Word-based generation
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Our New Architecture: HierVAE
‣ Generates molecules motif by motif 

- Faster and more efficient 
- Much higher reconstruction accuracy for large molecules
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Our New Architecture: HierVAE
‣ Motif extraction from data 

- Motif extraction is based on heuristics 
- Later I will discuss how motifs can be learned (based on given properties). 

‣ Hierarchical Graph Encoder 
- Representing molecules at both motif and atom level. 
- Designed to match the decoding process 

‣ Hierarchical Graph Decoder 
- Each generation step needs to resolve: 
1. What’s the next motif?  
2. How it should be attached to current graph?



Motif Extraction Algorithm
‣ A molecule is decomposed into disconnected motifs as follows: 
1. Find all the bridge bonds (u, v) such that either u or v is part of a ring.
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Motif Extraction Algorithm
‣ A molecule is decomposed into disconnected motifs as follows: 
1. Find all the bridge bonds (u, v) such that either u or v is part of a ring. 
2. Detach all bridge bonds from its neighbors.
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Motif Extraction Algorithm
‣ A molecule is decomposed into disconnected components as follows: 
1. Find all the bridge bonds (u, v) such that either u or v is part of a ring. 
2. Detach all bridge bonds from its neighbors. 
3. Select all components as motifs if it occurs frequently in the training set.
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Motif Extraction Algorithm
‣ A molecule is decomposed into disconnected components as follows: 
1. Find all the bridge bonds (u, v) such that either u or v is part of a ring. 
2. Detach all bridge bonds from its neighbors. 
3. Select all components as motifs if it occurs frequently in the training set. 
4. If a component is not selected, further decompose it into basic rings and 

bonds.
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Mark attaching points
‣ Motif decomposition loses atom-level connectivity information 
‣ For ease of reconstruction, we propose to mark attaching points in each motif.
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Motif Vocabulary
‣ We can construct a motif vocabulary given a training set (usually <500) 

‣ Each motif also has a vocabulary of possible attaching point configurations. 
- Usually less than 10 because motifs have regular attachment patterns. 
- The attachment vocabulary covers >97% of the molecules in test set.
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Generation Process

Current state
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During generation, we maintain all 
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motifs will be attached



Generation Process

Current state Step 1: Motif Prediction
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Generation Process

Current state Step 2: Attachment Prediction
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Generation Process

Current state Step 3: Graph Prediction
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Generation Process

Current state Next State
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Generation Process
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‣ JT-VAE assembles each neighborhood (multiple motifs) in one go. 
‣ HierVAE decomposes the assembly process into multiple “baby steps” 

- First predict attaching points, then matching atoms. 
- Assembles one motif at a time, not the entire neighborhood.



Hierarchical Graph Encoder (bottom up)

Atom Layer
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Hierarchical Graph Encoder (bottom up)
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Hierarchical Graph Encoder (bottom up)
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‣ Motif layer designed for motif 
prediction (step 1) 

‣ Attachment layer is designed for 
attachment prediction (step 2) 

‣ Atom layer is designed for graph 
prediction (step 3)



Hierarchical Graph Encoder (bottom up)
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‣ Run motif layer message 
passing network 

‣ Run attachment layer message 
passing network 

‣ Run atom layer message 
passing network
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Hierarchical Graph Decoder (top down)

‣ Motif Prediction 
- Classification: predict the right 

motif in the vocabulary
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Hierarchical Graph Decoder (top down)

‣ Motif Prediction 
- Classification: predict the right 

motif in the vocabulary 

‣ Attachment Prediction 
- Classification: predict the right 

attachment in the vocabulary
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Hierarchical Graph Decoder (top down)
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‣ Motif Prediction 
- Classification: predict the right 

motif in the vocabulary 

‣ Attachment Prediction 
- Classification: predict the right 

attachment in the vocabulary 

‣ Graph Prediction: 
- Classification: predict the 

corresponding matching atoms



Experiment 1: Polymer Generation

[1] St. John et al., “Message-passing neural networks for high-throughput polymer screening.” The Journal of chemical physics, 150 (23):234111, 2019

Dataset [1]: 86K polymers (76K training, 5K validation, 5K testing) 
Evaluation Metrics: Sample 5000 molecules from models 
‣ Reconstruction accuracy 
‣ Validity 
‣ Uniqueness 
‣ Diversity 
‣ Property statistics: Frechet distance between property distributions of molecules 

in the generated set and test set (logP, QED, SA, molecular weight). 
‣ Structural statistics: 

- Nearest neighbor similarity (SNN) 
- Fragment similarity (Frag) 
- Scaffold similarity (Scaf)



Experiment 1: Polymer Generation
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Experiment 1: Polymer Generation
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‣ Goal: We aim to transform given molecules into molecules that satisfy given 
design specifications (first introduced in Jin et al., 2019)

Experiment 2: Lead optimization

Learning Multimodal Graph-to-Graph Translation for Molecular Optimization, W. Jin, R. Barzilay, T. Jaakkola, ICLR 2019
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‣ Goal: We aim to transform given molecules into molecules that satisfy given 
design specifications (first introduced in Jin et al., 2019)

Experiment 2: Lead optimization

‣ Similar but … 
‣ Better drug-likeness

‣ Similar but … 
‣ Better solubility

‣ Need to learn a molecule-to-molecule mapping (i.e., graph-to-graph) 
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‣ Goal: We aim to transform given molecules into molecules that satisfy given 
design specifications 

‣ The training set consists of (source, target) molecular pairs, e.g., 

‣ Easy to modify HierVAE into a translation model (just add attention layers)

Lead optimization as Graph Translation
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DRD2 Optimization
‣ Single property optimization: DRD2 success % (from inactive to active)
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‣ We use a property predictor [1] to 
evaluate DRD2 activity of generated 
compounds

[1] Olivecrona et al., Molecular de-novo design through deep reinforcement learning, J. Chem. Inf. Model. 2017



QED Optimization
‣ Single property optimization: drug-likeness (QED) success %
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‣ QED is computed by RDKit



Summary
‣ Molecular graph generation is an important problem for ML and drug discovery 

‣ In this paper, we proposed HierVAE to generate molecules motif by motif. 

‣ HierVAE works better than previous methods, both in large molecules 
(polymers) as well as small molecules (graph translation). 

‣ Since motifs structures are flexible, how should we construct a good motif 
vocabulary? 
- Jin et al., Multi-objective molecule generation using interpretable substructures. ICML 2020 
- Use interpretability techniques to construct a motif vocabulary relevant for downstream 

task (poster ID 2748)


