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Drug Discovery via Generative Models

» Drug discovery: finding molecules with desired chemical properties
» The primary challenge: large search space
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Drug Discovery via Generative Models

» Generative models can be used to efficiently search in the chemical space

» Given a specified criterion, the model generates a molecule with desired
properties.
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Molecular Graph Generation

» Consider connected graphs...
» Different type of graphs require different generation method.
» What kind of generation method is suitable for molecules?
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Previous Methods for Molecule Generation

» Atom based methods: CG-VAE (Liu et al. 2018), DeepGMG (Li et al. 2018),
GraphRNN (You et al. 2018), and more
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Previous Methods for Molecule Generation

» Atom based methods: CG-VAE (Liu et al. 2018), DeepGMG (Li et al. 2018),
GraphRNN (You et al. 2018), and more

» Substructure based methods: JT-VAE (Jin et al., 2018)
- Incorporating inductive bias (i.e., low tree-width) into generation
- Each time generate a cycle or edge
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Previous methods: limitation

» Atom based methods: CG-VAE (Liu et al. 2018), DeepGMG (Li et al. 2018),
GraphRNN (You et al. 2018), and more

» Substructure based methods: JT-VAE (Jin et al., 2018)

Reconstruction Accuracy w.r.t.
Molecule Size
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Previous methods: limitation

» Atom based methods: CG-VAE (Liu et al. 2018), DeepGMG (Li et al. 2018),
GraphRNN (You et al. 2018), and more

» Substructure based methods: JT-VAE (Jin et al., 2018)

Reconstruction Accuracy w.r.t.
Molecule Size
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Failure in Generating Large Molecules

» Atom based methods: CG-VAE (Liu et al. 2018), DeepGMG (Li et al. 2018),
GraphRNN (You et al. 2018), and more
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» Many Generation Steps: Vanishing gradient + error accumulation



Failure in Generating Large Molecules

» Atom based methods: CG-VAE (Liu et al. 2018), DeepGMG (Li et al. 2018),
GraphRNN (You et al. 2018), and more

» Substructure based methods: JT-VAE (Jin et al., 2018)
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» JT-VAE decoder requires each substructure neighborhood to be assembled in
one go, making it combinatorially challenging to handle large substructures.




Larger Building Blocks: Motifs

» JT-VAE only considered single rings and bonds as building blocks

» How about using larger building blocks — motifs with flexible structures, not
restricted to rings and bonds?

» Large molecules such as polymers exhibit clear hierarchical structure, being
built from repeated structural motifs.
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» Atom-based generation == character-based generation
» Substructure-based generation == word-based generation
» Motif-based generation == phrase-based generation
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Our New Architecture: HierVAE

» Generates molecules motif by motif
- Faster and more efficient
- Much higher reconstruction accuracy for large molecules

Reconstruction Accuracy w.r.t. Molecule Size
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Our New Architecture: HierVAE

» Motif extraction from data
- Motif extraction is based on heuristics
- Later I will discuss how motifs can be learned (based on given properties).

» Hierarchical Graph Encoder
- Representing molecules at both motif and atom level.
- Designed to match the decoding process

» Hierarchical Graph Decoder
- Each generation step needs to resolve:
1. What's the next motif?
2. How it should be attached to current graph?



Motif Extraction Algorithm

» A molecule is decomposed into disconnected motifs as follows:
1. Find all the bridge bonds (u, v) such that either u or v is part of a ring.
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Motif Extraction Algorithm

» A molecule is decomposed into disconnected motifs as follows:
1. Find all the bridge bonds (u, v) such that either u or v is part of a ring.
2. Detach all bridge bonds from its neighbors.
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Motif Extraction Algorithm

» A molecule is decomposed into disconnected components as follows:

1. Find all the bridge bonds (u, v) such that either u or v is part of a ring.
2. Detach all bridge bonds from its neighbors.

3. Select all components as motifs if it occurs frequently in the training set.
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Motif Extraction Algorithm

» A molecule is decomposed into disconnected components as follows:

1. Find all the bridge bonds (u, v) such that either u or v is part of a ring.
2. Detach all bridge bonds from its neighbors.

3. Select all components as motifs if it occurs frequently in the training set.
4,

If a component is not selected, further decompose it into basic rings and
bonds.
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Mark attaching points

» Motif decomposition loses atom-level connectivity information
» For ease of reconstruction, we propose to mark attaching points in each motif.
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Motif Vocabulary

» We can construct a motif vocabulary given a training set (usually <500)
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» Each motif also has a vocabulary of possible attaching point configurations.
- Usually less than 10 because motifs have regular attachment patterns.
- The attachment vocabulary covers >97% of the molecules in test set.
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Generation Process

Current state
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During generation, we maintain all
possible positions to which new
motifs will be attached



Generation Process

Current state

Step 1: Motif Prediction

Motif
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Generation Process

Current state Step 2: Attachment Prediction
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Generation Process

Current state Step 3: Graph Prediction




Generation Process

Current state Next State




Generation Process

Current state Next State
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» JT-VAE assembles each neighborhood (multiple motifs) in one go.

» HierVAE decomposes the assembly process into multiple “baby steps”
- First predict attaching points, then matching atoms.
- Assembles one motif at a time, not the entire neighborhood.




Hierarchical Graph Encoder (bottom up)

» Atom layer serves graph
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Hierarchical Graph Encoder (bottom up)
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Hierarchical Graph Encoder (bottom up)

~

Motif Layer &

<

g
20
U
2

Attachment /
Layer

2

N S

Atom Layer Q\
N H

/ q O)\

|
N\
o

» Motif layer designed for motif
prediction (step 1)

» Attachment layer is designed for
attachment prediction (step 2)

» Atom layer is designed for graph
prediction (step 3)



Hierarchical Graph Encoder (bottom up)

Motif vectors

A A A

» Run motif layer message

Motif Layer b passing network
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» Run atom layer message
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Hierarchical Graph Decoder (top down)
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Hierarchical Graph Decoder (top down)
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Hierarchical Graph Decoder (top down)
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Experiment 1: Polymer Generation

Dataset [1]: 86K polymers (76K training, 5K validation, 5K testing)
Evaluation Metrics: Sample 5000 molecules from models

» Reconstruction accuracy

» Validity

» Uniqueness

» Diversity

» Property statistics: Frechet distance between property distributions of molecules
in the generated set and test set (logP, QED, SA, molecular weight).

» Structural statistics:
- Nearest neighbor similarity (SNN)
- Fragment similarity (Frag)
- Scaffold similarity (Scaf)

[1] St. John et al., “Message-passing neural networks for high-throughput polymer screening.” The Journal of chemical physics, 150 (23):234111, 2019



Experiment 1: Polymer Generation

Method Reconstruction / Sample Quality (1) Property Statistics () Structural Statistics (1)
Recon. Valid Unique  Div. logP SA QED MW  SNN Frag. Scaf.
Real data - 100% 100%  0.823 0.094 6.7¢-5 1.7¢-5 823 0.706 0.995 0.462
SMILES 21.5% 93.1% 973% 0821 1471 0.011 Sde-4 4963 0.704 0.981 0.385
CG-VAE 424% 100% 96.2% 0879 3958 2.600 0.0030 3944 0.204 0.372 0.001
JT-VAE 585% 100% 94.1% 0864 2.645 0.157 0.0075 10867 0.522 0.925 0.297
HierVAE 799% 100% 97.0% 0.817 0525 0.007 5.7e-4 1928 0.708 0.984 0.390
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Experiment 1: Polymer Generation

Reconstruction Accuracy w.r.t.
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Experiment 2: Lead optimization

» Goal: We aim to transform given molecules into molecules that satisfy given
design specifications (first introduced in Jin et al., 2019)

Learning Multimodal Graph-to-Graph Translation for Molecular Optimization, W. Jin, R. Barzilay, T. Jaakkola, ICLR 2019



Experiment 2: Lead optimization

» Goal: We aim to transform given molecules into molecules that satisfy given
design specifications (first introduced in Jin et al., 2019)
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Experiment 2: Lead optimization

» Goal: We aim to transform given molecules into molecules that satisfy given
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Experiment 2: Lead optimization

» Goal: We aim to transform given molecules into molecules that satisfy given
design specifications (first introduced in Jin et al., 2019)
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» Need to learn a molecule-to-molecule mapping (i.e., graph-to-graph)

Learning Multimodal Graph-to-Graph Translation for Molecular Optimization, W. Jin, R. Barzilay, T. Jaakkola, ICLR 2019



Lead optimization as Graph Translation

» Goal: We aim to transform given molecules into molecules that satisfy given
design specifications (first introduced in Jin et al., 2019)

Source X CNK@G@ » HHHH » Y©A<TC§W Y Target

Learning Multimodal Graph-to-Graph Translation for Molecular Optimization, W. Jin, R. Barzilay, T. Jaakkola, ICLR 2019



Lead optimization as Graph Translation

» Goal: We aim to transform given molecules into molecules that satisfy given
design specifications (first introduced in Jin et al., 2019)
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» The training set consists of (source, target) molecular pairs, e.qg.,
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Lead optimization as Graph Translation

» Goal: We aim to transform given molecules into molecules that satisfy given
design specifications
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» The training set consists of (source, target) molecular pairs, e.qg.,
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» Easy to modify HierVAE into a translation model (just add attention layers)



DRD2 Optimization

» Single property optimization: DRD2 success % (from inactive to active)

Similarity(X, Y) > 0.4 100
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Source Molecule (DRD2=0.008) DRD2=0.933 70

DRD2(X) < 0.05 DRD2(Y) > 0.5

» We use a property predictor [1] to

evaluate DRD2 activity of generated 40
compounds MMPA Seq2Seq JT-G2G AtomG2G HierG2G

[1] Olivecrona et al., Molecular de-novo design through deep reinforcement learning, J. Chem. Inf. Model. 2017



QED Optimization

» Single property optimization: drug-likeness (QED) success %

Similarity(X, Y) > 0.4
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Source Molecule (QED=0.784) QED=0.924

QED(X) < 0.8 QED(Y) > 0.9

» QED is computed by RDKit

MMPA Seq2Seq JT-G2G AtomG2G HierG2G



» Molecular graph generation is an important problem for ML and drug discovery

» In this paper, we proposed HierVAE to generate molecules motif by motif.

» HierVAE works better than previous methods, both in large molecules
(polymers) as well as small molecules (graph translation).

» Since motifs structures are flexible, how should we construct a good motif
vocabulary?

- Jin et al., Multi-objective molecule generation using interpretable substructures. ICML 2020

- Use interpretability techniques to construct a motif vocabulary relevant for downstream
task (poster ID 2748)



