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Introduction

I Given the sizes of modern data sets, stochastic gradient descent is
one of the most widely used optimization algorithms today

– Computational and statistical properties have been studied for
decades (Robbins & Monro, 1951; Fabian, 1968; Ruppert, 1988;
Kushner & Yin, 2003; Polyak & Juditsky, 1992; ...)

I Recently, lots of interest in implicit regularization

I In particular, a line of work showing (early-stopped) gradient descent
is linked to `2 regularization

I Interesting, but also computationally convenient
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Introduction

I Natural to ask: do the iterates generated by (mini-batch) stochastic
gradient descent also possess (implicit) `2 regularity?

I Why might there be a connection, at all?

– Compare the paths for least squares regression
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I In this paper, we’ll focus on least squares regression
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Introduction

I Main tool for making the connection: a stochastic differential
equation that we call stochastic gradient flow

– Linked to SGD with a constant step size; more on this later

I We give a bound on the excess risk of stochastic gradient flow at
time t, over ridge regression with tuning parameter λ = 1/t

– Result(s) hold across the entire optimization path
– Results do not place strong conditions on the features
– Proofs are simpler than in discrete-time

I Roughly speaking, the bound decomposes into three parts

– The variance of ridge regression scaled by a constant less than 1
– The “price of stochasticity”: a term that is non-negative, but

vanishes as time grows
– A term that is tied to the limiting optimization error: this term is

zero in the overparametrized regime, but positive otherwise

Overview 5



Introduction

I Main tool for making the connection: a stochastic differential
equation that we call stochastic gradient flow

– Linked to SGD with a constant step size; more on this later

I We give a bound on the excess risk of stochastic gradient flow at
time t, over ridge regression with tuning parameter λ = 1/t

– Result(s) hold across the entire optimization path
– Results do not place strong conditions on the features
– Proofs are simpler than in discrete-time

I Roughly speaking, the bound decomposes into three parts

– The variance of ridge regression scaled by a constant less than 1
– The “price of stochasticity”: a term that is non-negative, but

vanishes as time grows
– A term that is tied to the limiting optimization error: this term is

zero in the overparametrized regime, but positive otherwise

Overview 5



Outline

Overview

Continuous-time viewpoint

Risk bounds

Numerical examples

Conclusion

Continuous-time viewpoint 6



Stochastic gradient flow

I We consider the stochastic differential equation

dβ(t) =
1

n
XT (y −Xβ(t)) dt︸ ︷︷ ︸

just the gradient for
least squares regression

+ Qε(β(t))1/2 dW (t),︸ ︷︷ ︸
fluctuations are governed by the
cov. of the stochastic gradients

(1)

where β(0) = 0,

Qε(β) = ε · CovI

(
1

m
XT

I (yI −XIβ)

)
is the diffusion coefficient, I ⊆ {1, . . . , n} is a mini-batch, and ε > 0
is a (fixed) step size

I We call (1) stochastic gradient flow
– Has a few nice properties, and bears several connections to SGD

with a constant step size; more on this next
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Stochastic gradient flow

I Lemma: the Euler discretization of stochastic gradient flow β̃(k), and
constant step size SGD β(k), share first and second moments, i.e.,

E(β̃(k)) = E(β(k)) and Cov(β̃(k)) = Cov(β(k))

– Implies the prediction errors match
– Also, implies any deviation between the first two moments of

stochastic gradient flow and SGD must be due to discretization error

I Sanity check: revisiting the solution/optimization paths from earlier
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Stochastic gradient flow
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Stochastic gradient flow

I A number of works consider instead the constant covariance process,

dβ(t) =
1

n
XT (y −Xβ(t)) dt+

( ε
m
· Σ̂
)1/2

dW (t), (2)

where Σ̂ = XTX/n (cf. Langevin dynamics)

I Turns out (theoretically, empirically) stochastic gradient flow is a
more accurate approximation to SGD than (2) is
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Setup

I Assume a standard regression model

y = Xβ0 + η, η ∼ (0, σ2I)

I Fix X; let si, i = 1, . . . , p, denote the eigenvalues of XTX/n

I Recall a useful result for (batch) gradient flow (Ali et al., 2018)
– For least squares regression, gradient flow is

β̇(t) =
1

n
XT (y −Xβ(t))dt, β(0) = 0

– Has the solution

β̂gf(t) = (XTX)+
(
I − exp(−tXTX/n)

)
XT y

– Then, for any time t ≥ 0 (note the correspondence with λ),

Bias2(β̂gf(t);β0) ≤ Bias2(β̂ridge(1/t);β0) and

Var(β̂gf(t)) ≤ 1.6862 ·Var(β̂ridge(1/t)), so that

Risk(β̂gf(t);β0) ≤ 1.6862 · Risk(β̂ridge(1/t);β0)
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Excess risk bound (over ridge)

I Thm.: for any time t > 0 (provided the step size is small enough),

Risk(β̂sgf(t);β0)− Risk(β̂ridge(1/t);β0)

≤ 0.6862 ·Varη(β̂ridge(1/t)) (scaled ridge variance)

+ ε · n
m

p∑
i=1

Eη

[
exp(δy)si
si − α/2

(
exp(−αt)− exp(−2tsi)

)]
(“price of stochasticity”)

+ ε · n
m

p∑
i=1

Eη
[
γy
(
1− exp(−2tsi)

)]
(limiting opt. error)

I ε,m denote the step size and mini-batch size, respectively

I si denote the eigenvalues of the sample covariance matrix

I α, γy, δy depend on n, p,m, ε, si, y, but not t (see paper for details)
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Implications/observations

I The second and third (variance) terms ...
– Roughly scale with ε/m (Goyal et al., 2017; Smith et al., 2017; You

et al., 2017; Shallue et al., 2019); this is different from gradient flow
– Depend on the signal-to-noise ratio; this is different from gradient

flow (and linear smoothers in general, because stochastic gradient
flow/descent are actually randomized linear smoothers)

– The second term decreases with time, just as a bias would; this is
different from gradient flow (see lemma in the paper)

I Proof builds on the grad flow result, and uses the special covariance
structure of the diffusion coefficient Qε(β(t)) for least squares

– Result(s) hold across the entire optimization path
– No strong conditions placed on the data matrix X
– Also, have the following lower bound under oracle tuning

inf
λ≥0

Risk(β̂ridge(λ);β0) ≤ inf
t≥0

Risk(β̂sgf(t);β0)

– Similar result holds for the coefficient error (see theorem in paper)

Eη,Z‖β̂sgf(t)− β̂ridge(1/t)‖22

Risk bounds 13
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Synthetic data

I Below, we show n = 100, p = 10,m = 2

– The bound (Theorem 2) tracks ridge’s (and SGD’s) risk(s) closely
– The bound / SGD achieve risk comparable to grad flow in less time
– See paper for other settings (e.g., high dimensions), coefficient error
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Conclusion

I Gave theoretical and empirical evidence showing stochastic gradient
flow is closely related to `2 regularization

I Interesting directions for future work

– Showing that stochastic gradient flow and SGD are, in fact, close
– Making the computational-statistical trade-off precise
– General convex losses
– Adaptive stochastic gradient methods

Thanks for listening!
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