The Implicit Regularization of
Stochastic Gradient Flow for Least Squares

Alnur Alit, Edgar Dobriban2, and Ryan J. Tibshirani?

1Stanford University, 2University of Pennsylvania,
3Carnegie Mellon University



Outline

Overview



Introduction

» Given the sizes of modern data sets, stochastic gradient descent is
one of the most widely used optimization algorithms today
— Computational and statistical properties have been studied for
decades (Robbins & Monro, 1951; Fabian, 1968; Ruppert, 1988;
Kushner & Yin, 2003; Polyak & Juditsky, 1992; ...)



Introduction

» Given the sizes of modern data sets, stochastic gradient descent is
one of the most widely used optimization algorithms today

— Computational and statistical properties have been studied for
decades (Robbins & Monro, 1951; Fabian, 1968; Ruppert, 1988;
Kushner & Yin, 2003; Polyak & Juditsky, 1992; ...)

» Recently, lots of interest in implicit regularization

» In particular, a line of work showing (early-stopped) gradient descent
is linked to /5 regularization



Introduction

Given the sizes of modern data sets, stochastic gradient descent is
one of the most widely used optimization algorithms today

— Computational and statistical properties have been studied for
decades (Robbins & Monro, 1951; Fabian, 1968; Ruppert, 1988;
Kushner & Yin, 2003; Polyak & Juditsky, 1992; ...)

Recently, lots of interest in implicit regularization

In particular, a line of work showing (early-stopped) gradient descent
is linked to /5 regularization

Interesting, but also computationally convenient
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Introduction

» Natural to ask: do the iterates generated by (mini-batch) stochastic
gradient descent also possess (implicit) /5 regularity?

» Why might there be a connection, at all?
— Compare the paths for least squares regression
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» In this paper, we'll focus on least squares regression
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equation that we call stochastic gradient flow
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» We give a bound on the excess risk of stochastic gradient flow at
time ¢, over ridge regression with tuning parameter \ = 1/t
— Result(s) hold across the entire optimization path
— Results do not place strong conditions on the features
— Proofs are simpler than in discrete-time



Introduction

» Main tool for making the connection: a stochastic differential
equation that we call stochastic gradient flow

— Linked to SGD with a constant step size; more on this later

» We give a bound on the excess risk of stochastic gradient flow at
time ¢, over ridge regression with tuning parameter \ = 1/t
— Result(s) hold across the entire optimization path
— Results do not place strong conditions on the features
— Proofs are simpler than in discrete-time

» Roughly speaking, the bound decomposes into three parts
— The variance of ridge regression scaled by a constant less than 1
— The “price of stochasticity”: a term that is non-negative, but

vanishes as time grows
— A term that is tied to the limiting optimization error: this term is
zero in the overparametrized regime, but positive otherwise
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Stochastic gradient flow
» \We consider the stochastic differential equation

a8t = LXT - Xp@)ats QB ()

fluctuations are governed by the
cov. of the stochastic gradients

just the gradient for
least squares regression

where 5(0) =0,

Qe(B) = e- Covz (;Xg(yz - XIﬁ))

is the diffusion coefficient, Z C {1,...,n} is a mini-batch, and € > 0
is a (fixed) step size

» We call (1) stochastic gradient flow
— Has a few nice properties, and bears several connections to SGD
with a constant step size; more on this next
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Stochastic gradient flow
» Lemma: the Euler discretization of stochastic gradient flow B(’“), and

constant step size SGD [3(k), share first and second moments, i.e.,

E(BM) =E(8®) and Cov(B™M) = Cov(s™®)

— Implies the prediction errors match
— Also, implies any deviation between the first two moments of
stochastic gradient flow and SGD must be due to discretization error

> Sanity check: revisiting the solution/optimization paths from earlier

Ridge Regression Stochastic Gradient Descent Stochastic Gradient Flow
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Stochastic gradient flow

» A number of works consider instead the constant covariance process,

€

a0 = x7y - xsmars  (S8) " ave, @

where 3 = X7 X /n (cf. Langevin dynamics)



Stochastic gradient flow

» A number of works consider instead the constant covariance process,

€

a0 = x7y - xsmars  (S8) " ave, @

where 3 = X7 X /n (cf. Langevin dynamics)

» Turns out (theoretically, empirically) stochastic gradient flow is a
more accurate approximation to SGD than (2) is

— sGD
—— Non-Constant Covariance SGF
—— Constant Covariance SGF
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Setup
» Assume a standard regression model
y=XBo+n, n~ (0,0
» Fix X; let 54,4 =1,...,p, denote the eigenvalues of X7 X/n

» Recall a useful result for (batch) gradient flow (Ali et al., 2018)
— For least squares regression, gradient flow is

Bt = TXT(y— Xp()dr, B(0) =0
— Has the solution
BE (1) = (XTX)T (I — exp(—tX " X/n)) X"y

— Then, for any time ¢ > 0 (note the correspondence with \),

Bias® (8% (t); Bo) < Bias®(8"%¢°(1/t); o) and
Var (8% (t)) < 1.6862 - Var(3"92°(1/t)), so that
Risk(35 (t); Bo) < 1.6862 - Risk(3"%°(1/1); Bo)



Excess risk bound (over ridge)

» Thm.: for any time ¢t > 0 (provided the step size is small enough),

Risk(3°f (¢); Bo) — Risk(B"5°(1/1); o)

< 0.6862 - Varn(Bridge(l/t)) (scaled ridge variance)
n n < . -exp((sy)si( (—at) ( o ))
6-—5 ——2 (exp(—at) — exp(—2ts;
m = " s —af2 2 o
("price of stochasticity”)
p
n -
ENE, (1 - —Zti} limiting opt.
+€ m 2 n _’yy( exp( S )) (limiting opt. error)

» ¢, m denote the step size and mini-batch size, respectively
» s, denote the eigenvalues of the sample covariance matrix

> «,v,,d, depend on n,p,m, €, s;,y, but not ¢ (see paper for details)



» The

Implications/observations

second and third (variance) terms ...

Roughly scale with ¢/m (Goyal et al., 2017; Smith et al., 2017; You
et al., 2017; Shallue et al., 2019); this is different from gradient flow
Depend on the signal-to-noise ratio; this is different from gradient
flow (and linear smoothers in general, because stochastic gradient
flow/descent are actually randomized linear smoothers)

The second term decreases with time, just as a bias would; this is
different from gradient flow (see lemma in the paper)



Implications/observations

» The second and third (variance) terms ...

— Roughly scale with e¢/m (Goyal et al., 2017; Smith et al., 2017; You
et al., 2017; Shallue et al., 2019); this is different from gradient flow

— Depend on the signal-to-noise ratio; this is different from gradient
flow (and linear smoothers in general, because stochastic gradient
flow/descent are actually randomized linear smoothers)

— The second term decreases with time, just as a bias would; this is
different from gradient flow (see lemma in the paper)

» Proof builds on the grad flow result, and uses the special covariance
structure of the diffusion coefficient Q.(5(t)) for least squares
— Result(s) hold across the entire optimization path
— No strong conditions placed on the data matrix X
— Also, have the following lower bound under oracle tuning

. . Aridge . : e Asgf .
)l\gf(‘) RISk(ﬁ ()‘)7 /BO) < %Izlg Rl&k(/B (t)v /80)
— Similar result holds for the coefficient error (see theorem in paper)

Ey 2| 5 () — 8795 (1/8)|13
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Estimation Risk

Synthetic data

Below, we show n = 100,p = 10,m = 2
— The bound (Theorem 2) tracks ridge's (and SGD's) risk(s) closely
— The bound / SGD achieve risk comparable to grad flow in less time
— See paper for other settings (e.g., high dimensions), coefficient error
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Conclusion

» Gave theoretical and empirical evidence showing stochastic gradient
flow is closely related to ¢5 regularization

» Interesting directions for future work

— Showing that stochastic gradient flow and SGD are, in fact, close
— Making the computational-statistical trade-off precise

— General convex losses

Adaptive stochastic gradient methods

Thanks for listening!
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