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Problem

Training distributed/federated learning models is typically performed by
solving an optimization problem

min
x∈Rd

{
P(x) :=

1

n

n∑
i=1

fi(x) + ψ(x)
}
,

fi(x): loss function associated with data stored on node/device i
ψ(x): regularization term (e.g., `1 regularizer ‖x‖1, `2 regularizer ‖x‖22
or indicator function IC(x) for some set C)
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Examples

min
x∈Rd

{
P(x) :=

1

n

n∑
i=1

fi(x) + ψ(x)
}

Each node/device i stores m data samples {(ai ,j , bi ,j) ∈ Rd+1}mj=1

I Lasso regression: fi(x) = 1
m

∑m
j=1(aTi ,jx − bi ,j)

2, ψ(x) = λ‖x‖1
I Logistic regression: fi(x) = 1

m

∑m
j=1 log

(
1 + exp(−bi ,jaTi ,jx)

)
I SVM: fi(x) = 1

m

∑m
j=1 max

(
0, 1− bi ,ja

T
i ,jx
)
, ψ(x) = λ

2‖x‖
2
2
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Goal

min
x∈Rd

{
P(x) :=

1

n

n∑
i=1

fi(x) + ψ(x)
}

Goal: find an ε-solution (parameters) x̂ , e.g., P(x̂)− P(x∗) ≤ ε or
‖x̂ − x∗‖22 ≤ ε, where x∗ := arg minx∈Rd P(x).

For optimization methods:
Bottleneck: communication cost
Common strategy: Compress the communicated messages (lower
communication cost in each iteration/communication round) and hope
that this will not increase the total number of iterations/comm. rounds.
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Related Work

• Several recent work show that the total communication complexity
can be improved via compression. See e.g., QSGD [Alistarh et al., 2017],
DIANA [Mishchenko et al., 2019], Natural compression [Horváth et al.,
2019].

• However previous work usually lead to this kind of improvement:
Communication cost per iteration (- -) Iterations (+) ⇒ Total (-)

‘-’ denotes decrease, ‘+’ denotes increase

• In this work, we provide the first optimization methods provably
combining the benefits of gradient compression and acceleration:

Communication cost per iteration (- -) Iterations (- -) ⇒ Total (- - - -)
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Single Device Setting

• First, consider the simple single device (i.e. n = 1)) case:

min
x∈Rd

f (x),

where f : Rd → R is L-smooth, and convex or µ-strongly convex.

• f is L-smooth or has L-Lipschitz continuous gradient (for L > 0) if

‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖, (1)

and µ-strongly convex (for µ ≥ 0) if

f (x)− f (y)− 〈∇f (y), x − y〉 ≥ µ

2
‖x − y‖2 (2)

for all x , y ∈ Rd . The µ = 0 case reduces to the standard convexity.
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Compressed Gradient Descent (CGD)
• Problem: minx∈Rd f (x)

1) Given initial point x0, step-size η
2) CGD update: xk+1 = xk − ηC(∇f (xk)), for k ≥ 0

Definition (Compression operator)

A randomized map C : Rd 7→ Rd is an ω-compression operator if

E[C(x)] = x , E[‖C(x)− x‖2] ≤ ω‖x‖2, ∀x ∈ Rd . (3)

In particular, no compression (C(x) ≡ x) implies ω = 0.

Note that Condition (3) is satisfied by many practical compressions, e.g.,
random-k sparsification, (p, s)-quantization.
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Accelerated Compressed Gradient Descent (ACGD)

Inspired by Nesterov’s accelerated gradient descent (AGD) [Nesterov,
2004] and FISTA [Beck and Teboulle, 2009], here we propose the first
accelerated compressed gradient descent (ACGD) method.

Our ACGD update:
1) xk = αky k + (1− αk)zk

2) y k+1 = xk − ηkC(∇f (xk))

3) zk+1 = βk
(
θkzk + (1− θk)xk

)
+ (1−βk)

(
γky k+1 + (1−γk)y k

)
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Convergence Results in Single Device Setting

Table: Convergence results (Iterations) for the single device (n = 1) case minx∈Rd f (x)

Algorithm µ-strongly convex f convex f

Compressed Gradient Descent
(CGD [Khirirat et al., 2018])

O
(
(1 + ω) Lµ log 1

ε

)
O
(
(1 + ω)Lε

)
ACGD (this paper) O

(
(1 + ω)

√
L
µ log 1

ε

)
O

(
(1 + ω)

√
L
ε

)

• If no compression (i.e., ω = 0): CGD recovers the results of vanilla
(uncompressed) GD, i.e., O(Lµ log 1

ε ) and O(Lε ).

• If compression parameter ω ≤ O
(√

L
µ

)
or O

(√
L
ε

)
:

Our ACGD enjoys the benefits of compression and acceleration, i.e.,
both the communication cost per iteration (compression) and the
total number of iterations (acceleration) are smaller than that of GD.
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Recall the Discussion in Related Work

• Previous work usually lead to this kind of improvement:
Communication cost per iteration (- -) Iterations (+) ⇒ Total (-)

‘-’ denotes decrease, ‘+’ denotes increase

• In this work, we provide the first optimization methods provably
combining the benefits of gradient compression and acceleration:

Communication cost per iteration (- -) Iterations (- -) ⇒ Total (- - - -)
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Distributed Setting

Now, we consider the general distributed setting with n devices/nodes:

min
x∈Rd

{
P(x) :=

1

n

n∑
i=1

fi(x) + ψ(x)
}
.

The presence of multiple nodes (n > 1) and of the regularizer ψ poses
additional challenges.

We propose a distributed variant of ACGD (called ADIANA) which can
be seen as an accelerated version of DIANA [Mishchenko et al., 2019].
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Accelerated DIANA (ADIANA)

Main update of our ADIANA:
1) xk = θ1z

k + θ2w
k + (1− θ1 − θ2)y k

2i) all devices/nodes/machines compress shifted local gradient
Ck

i (∇fi(xk)− hk
i ) in parallel and send to the server

2ii) update local shift hk+1
i = hk

i + αCk
i (∇fi(w k)− hk

i )

3) Aggregate received compressed gradient information

g k = 1
n

n∑
i=1

Ck
i (∇fi(xk)− hk

i ) + hk

4) Perform a proximal update step y k+1 = proxηψ(xk − ηg k)

5) zk+1 = βzk + (1− β)xk + γ
η (y k+1 − xk)
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Convergence Results in Distributed Setting
Table: Convergence results (Iterations) for the general distributed case with n devices

(the result in the case n < ω can be found in Table 2 of our paper)

Algorithm
In the case n ≥ ω

(lots of devices or low compression)
Distributed CGD

(DIANA [Mishchenko et al., 2019])
O
((
ω + L

µ

)
log 1

ε

)
ADIANA (this paper) O

((
ω +

√
L
µ +

√√
ω
n
ωL
µ

)
log 1

ε

)

• Note that ω + L
µ ≥ 2

√
ωL
µ and

√
ω
n ≤ 1.

• If compression parameter ω ≤ O
(

min
{√

L
µ , n

1
3

})
: Our ADIANA

enjoys the benefits of compression and acceleration, i.e., lower
communication cost per iteration (compression) and fewer total

number of iterations (acceleration)
√

L
µ log 1

ε vs. L
µ log 1

ε .
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Experiments

We demonstrate the performance of our accelerated distributed method
ADIANA and previous methods with different compression
operators on the regularized logistic regression problem,

min
x∈Rd

{
1

n

n∑
i=1

log
(
1 + exp(−biaTi x)

)
+
λ

2
‖x‖2

}
(4)

Compression operators: We adopt three compression operators:
random sparsification (see e.g. [Stich et al., 2018]), random
dithering (see e.g. [Alistarh et al., 2017]), and natural compression
(see e.g. [Horváth et al., 2019]).
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Figure: The communication complexity of three different methods for three
different compression operators on a5a (top) and mushrooms (bottom) datasets.
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Figure: The communication complexity of DIANA and ADIANA with and without
compression on a5a (top) and mushrooms (bottom) datasets.
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Conclusion

• We provide the first accelerated compressed gradient descent
methods (ACGD (n = 1) and ADIANA (general n > 1)) which combine
the benefits of compression and acceleration.

• The experimental results validate our theoretical results and confirm
the practical superiority of our accelerated methods.
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Thanks!

Zhize Li
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