Neural Contextual Bandits with UCB-based
Exploration

Dongruo Zhou ! Lihong Li ? Quanquan Gu !

IDepartment of Computer Science, UCLA

2Google Research

1/49

Outline

» Background

» Contextual bandit problem
» Deep neural networks

2/49

Outline

» Background
» Contextual bandit problem
» Deep neural networks

> Algorithm — NeuralUCB
» Use a neural network to learn the reward
> Use neural network's gradient to explore
» Upper confidence bound strategy

3/49

Outline

» Background

» Contextual bandit problem
» Deep neural networks

> Algorithm — NeuralUCB
» Use a neural network to learn the reward
> Use neural network's gradient to explore
» Upper confidence bound strategy

» Main theory

> Neural tangent kernel matrix and effective dimension
> O(VT) regret

4/49

Background — decision-making problems

Decision-making problems are everywhere!

> As a gambler in a casino, find a slot machine, you will...
> Limited budget, maximize the payoff !
» Which arm to pull?

> As a movie recommender, you need to...
» Recommend movies based on users’ interests, maximize users’

purchase rate

» Which movie to recommend?

(a) Slot machine (b) Movie recommendation

5/49

Background — contextual bandit

K-armed contextual bandit problem: movie recommendation

6/49

Background — contextual bandit

K-armed contextual bandit problem: movie recommendation
At round ¢,

> Agent observes K d-dimensional contextual vectors (user's movie
purchase history)

{xta €R? | a € [K]}

7/49

Background — contextual bandit

K-armed contextual bandit problem: movie recommendation
At round ¢,

> Agent observes K d-dimensional contextual vectors (user's movie
purchase history)

{xta €R? | a € [K]}

> Agent selects an action a; and receives a reward 7 4, (recommends
some movie and user choose to purchase or not)

8/49

Background — contextual bandit

K-armed contextual bandit problem: movie recommendation
At round ¢,

> Agent observes K d-dimensional contextual vectors (user's movie
purchase history)

{xta €R? | a € [K]}

> Agent selects an action a; and receives a reward 7 4, (recommends
some movie and user choose to purchase or not)

» The goal is to minimize the following pesudo regret

T
Rr=E |: Z(Tt,a;‘ - rt,at):|

t=1
where a; = argmax,¢ (x| E[rtq] is the optimal action at round ¢

9/49

Background — contextual linear bandit

Tta, = (0%, X¢.q,) + &, & ~ v-sub-Gaussian

10/49

Background — contextual linear bandit
Tta, = (0%, X¢.q,) + &, & ~ v-sub-Gaussian

» Build confidence set for 8* and use optimism in the face of
uncertainty (OFU) principle

11/49

Background — contextual linear bandit

Tta, = (0%, X¢.q,) + &, & ~ v-sub-Gaussian

» Build confidence set for 8* and use optimism in the face of
uncertainty (OFU) principle

> Leads to O(dv/T) regret (Abbasi-Yadkori et al. 2011)

» Strongly depends on linear structure!

12/49

Background — general reward function

Tta, = M(Xea,) +&, 0 < h(x) <1, & ~ v-sub-Gaussian

13/49

Background — general reward function

Tta, = M(Xea,) +&, 0 < h(x) <1, & ~ v-sub-Gaussian

» Including many popular contextual bandit problems
> Linear bandit
> h(x) = (6,x), where |02 <1, ||x|2 <1
> Generalized linear bandit
> h(x) = g((8,x)), where [|8]l2 < 1, [|x|2 < 1, [Vg| < 1

14 /49

Background — general reward function

Tta, = M(Xea,) +&, 0 < h(x) <1, & ~ v-sub-Gaussian

» Including many popular contextual bandit problems
> Linear bandit
> h(x) = (6,x), where |02 <1, ||x|2 <1
> Generalized linear bandit
> h(x) = g((8,x)), where [|8]l2 < 1, [|x|2 < 1, [Vg| < 1

We do not know what A is...

15/49

Background — general reward function

Tta, = M(Xea,) +&, 0 < h(x) <1, & ~ v-sub-Gaussian

» Including many popular contextual bandit problems
» Linear bandit
> h(x)=(0,x), where ||0]2 <1, ||x|l2 <1
» Generalized linear bandit
> h(x) = g((0,x)), where [|0]]2 <1, [[x[2 <1, [Vg| <1

We do not know what A is...

Use some universal function approximator, such as neural networks!

16 /49

Background — neural network

Fully connected neural networks:

F0:0) = VW (Wioso (- o(Wix))

input layer
hidden layer 1 hidden layer 2

17/49

Background — neural network

Fully connected neural networks:

F0:0) = VW (Wioso (- o(Wix))

input layer
hidden layer 1 hidden layer 2

» o(x) = max{z,0} is the ReLU activation function

18/49

Background — neural network

Fully connected neural networks:

F0:0) = VW (Wioso (- o(Wix))

output layer

input layer
hidden layer 1 hidden layer 2

» o(x) = max{z,0} is the ReLU activation function
> W, is the weight matrix

» W1 c Rmxd

> W, cR™™m 2<i<[—1

» WL c Rmxl

19/49

Background — neural network

Fully connected neural networks:

F0:0) = VW (Wioso (- o(Wix))

input layer
hidden layer 1 hidden layer 2

» o(x) = max{z,0} is the ReLU activation function

> 0 =[vec(W1)",...,vec(WL)T]T €RP, p=m+md+m?(L—1)

20/49

Background — neural network

Fully connected neural networks:

F0:0) = VW (Wioso (- o(Wix))

output layer

input layer
hidden layer 1 hidden layer 2

» o(x) = max{z,0} is the ReLU activation function
> 0 =[vec(W1)",...,vec(WL)T]T €RP, p=m+md+m?(L—1)
» Gradient of the neural network g(x;60) = Vg f(x;0) € RP

21/49

Question

» Neural network-based contextual bandit algorithms (Riquelme
et al. 2018; Zahavy and Mannor 2019)

» No theoretical guarantee

22/49

Question

» Neural network-based contextual bandit algorithms (Riquelme
et al. 2018; Zahavy and Mannor 2019)

» No theoretical guarantee

Can we design provably efficient neural network-based algorithm to
learn the general reward function?

23/49

Question

» Neural network-based contextual bandit algorithms (Riquelme
et al. 2018; Zahavy and Mannor 2019)

» No theoretical guarantee

Can we design provably efficient neural network-based algorithm to
learn the general reward function?

Yes! NeuralUCB
» Neural network to model reward function, UCB strategy to explore
> Theoretical guarantee on regret O(v/T)

» Matches regret bound for linear setting (Abbasi-Yadkori
et al. 2011)

24/49

NeuralUCB - initialization

» Special initialization on 6
> For1<I<L-1,

W 0
Wl - (0 W) 7W{i7j} ~ N(0,4/m)

> For L, W= (w',—w"), wg;; ~ N(0,2/m)

25 /49

NeuralUCB - initialization

» Special initialization on 6
> For1<I<L-1,

W 0
Wl - (0 W) 7W{i7j} ~ N(0,4/m)

> For L, W= (w',—w"), wg;; ~ N(0,2/m)
> Normalization on {x'}: for any 1 <i < TK, ||x'||2 =1 and
(x']; = [X']j1d/2
» For any unit vector x, construct x' = (x; x)/\@

26/49

NeuralUCB - initialization

» Special initialization on 6
> For1<I<L-1,

W 0
Wl - (0 W) 7W{i7j} ~ N(0,4/m)

> For L, W= (w',—w"), wg;; ~ N(0,2/m)
> Normalization on {x'}: for any 1 <i < TK, ||x'||2 =1 and
X'l = [X']j+as2
» For any unit vector x, construct x' = (x; x)/\/i
Guarantee that f(x%;8g) = 0!

27 /49

NeuralUCB — upper confidence bounds

At round ¢, NeuralUCB will...
> Observe {x;q}X

28 /49

NeuralUCB — upper confidence bounds

At round ¢, NeuralUCB will...
> Observe {x;q}X

» Compute upper confidence bound for each arm a, which is

Ut,a = f(xt7a§ 9t—1) +7t-1 \/g(xt,a§ Ot—l)TZ;jlg(xt,a; et—l)/m
N —

mean

variance

29/49

NeuralUCB — upper confidence bounds

At round ¢, NeuralUCB will...
> Observe {x;q}X

» Compute upper confidence bound for each arm a, which is

Ut,a = f(Xaa; 97:—1) -1 \/g(xt,a§ 9t—1)TZt_,11g(Xt,a; et—l)/m
N —

mean

variance

Compared with LinUCB (Li et al. 2010)

=1l
Ut,a = <Xt,a7 0t—1> +Ye—1 X;—aztflxt:a
S——— —_———

mean variance

30/49

NeuralUCB — upper confidence bounds

At round ¢, NeuralUCB will...
> Observe {x;q}X

» Compute upper confidence bound for each arm a, which is

Ut,a = f(Xaa; 97:—1) -1 \/g(xt,a§ 9t—1)TZt_,11g(Xt,a; et—l)/m
N —

mean

variance

Compared with LinUCB (Li et al. 2010)

=1l
Ut,a = <Xt,a7 0t—1> +Ye—1 X;—aztflxt:a
S——— —_———

mean
variance

» Select a; = argmax ¢ Ut.a, play a; and observe reward 7y 4,

31/49

NeuralUCB — update parameter

After receiving reward, NeuralUCB will...
» Update Z;

Zy =7 1+ 8(Xt,0,50t-1)8(Xt 0,5 0,-1)" /m

32/49

NeuralUCB — update parameter

After receiving reward, NeuralUCB will...
» Update Z;

Zy =7 1+ 8(Xt,0,50t-1)8(Xt 0,5 0,-1)" /m

» Update 6, using gradient descent
» Denote loss function £(0) as

t

LO) = (f(Xiai;0) = 1i0,)?/2+mA |6 — 0]3/2

i=1

33/49

NeuralUCB — update parameter

After receiving reward, NeuralUCB will...
» Update Z;

Zy =7 1+ 8(Xt,0,50t-1)8(Xt 0,5 0,-1)" /m

» Update 6, using gradient descent
» Denote loss function £(0) as

t

LO) = (f(Xiai;0) = 1i0,)?/2+mA |6 — 0]3/2

i=1

> Run J step gradient descent on £(8) starting from 6, take 0; as
the last iterate

0 =0,, aU+) = gU) — nVE(H(j)), 0, =60

34/49

NeuralUCB — confidence radius

After update neural network function, NeuralUCB will compute ¢,
which is ...

» Under the overparameterized setting (m > 1),

det Zt

_ _ J/2
e O<ﬁs+u log = =5+ (A +1L)(1 ﬂm)\) Mt/A)

function approximation error

confidence radius

35/49

NeuralUCB — confidence radius

After update neural network function, NeuralUCB will compute ¢,
which is ...

» Under the overparameterized setting (m > 1),

det Zt

_ _ J/2
e o<ﬁs+u log = =5+ (A +1L)(1 ﬂm)\) \/t/A)

function approximation error

confidence radius

Compared with LinUCB,

det Zt
= O(ﬁS%— v4/log —_)\I>

no function approximation error part!

36/49

Main theory — assumptions

Assumption

There exists A\g > 0 such that H > \gI, where H is the neural tangent

kernel matrix (Jacot et al. 2018; Cao and Gu 2019) on contexts
{1

37/49

Main theory — assumptions

Assumption

There exists A\g > 0 such that H > \gI, where H is the neural tangent

kernel matrix (Jacot et al. 2018; Cao and Gu 2019) on contexts
{1

> Satisfied if no two contexts in {x'}7Z5 are parallel.

38/49

Main theory — assumptions

Assumption

There exists A\g > 0 such that H > \gI, where H is the neural tangent
kernel matrix (Jacot et al. 2018; Cao and Gu 2019) on contexts
{1

> Satisfied if no two contexts in {x'}7Z5 are parallel.

Definition

The effective dimension d of the neural tangent kernel matrix on
contexts {x'}75 is defined as d = logdet(I+ H/\)/log(1 + TK/\).

39/49

Main theory — assumptions

Assumption

There exists A\g > 0 such that H > \gI, where H is the neural tangent
kernel matrix (Jacot et al. 2018; Cao and Gu 2019) on contexts
'}

> Satisfied if no two contexts in {x'}7Z5 are parallel.

Definition

The effective dimension d of the neural tangent kernel matrix on
contexts {x'}75 is defined as d = logdet(I+ H/\)/log(1 + TK/\).

» Notion adapted from Valko et al. (2013) and Yang and Wang
(2019)

40/ 49

Main theory — assumptions

Assumption

There exists A\g > 0 such that H > \gI, where H is the neural tangent
kernel matrix (Jacot et al. 2018; Cao and Gu 2019) on contexts
'}

> Satisfied if no two contexts in {x'}7Z5 are parallel.

Definition

The effective dimension d of the neural tangent kernel matrix on
contexts {x'}75 is defined as d = logdet(I+ H/\)/log(1 + TK/\).

» Notion adapted from Valko et al. (2013) and Yang and Wang
(2019)

> d ~logT in several special cases (Valko et al. 2013)

41/49

Main theory — regret bound

Theorem

Let h = [h(x")]TE e RTK . Set J = ©(TL/)),
n=0((mTL+m\™!) and S =2vh"H-1h. Under the
overparameterized setting (m > 1), with probability at least 1 — ¢,

Rp = 5(@\/ max{d, 52}).

42/49

Main theory — regret bound

Theorem

Let h = [h(x")]TE e RTK . Set J = ©(TL/)),
n=O((mTL+m\)~1) and S = 2Vh"H~th. Under the
overparameterized setting (m > 1), with probability at least 1 — ¢,

Rp = 5(@\/ max{d, 52}).

» h belongs to the RKHS space # spanned by H = S < ||h|»

43 /49

Main theory — regret bound

Theorem

Let h = [h(x))]TE e RTK . Set J = ©(TL/)),
n=O((mTL+m\)~1) and S = 2Vh"H~th. Under the
overparameterized setting (m > 1), with probability at least 1 — §,

Rp = 6(\/6%\/ max{d, 52}).

» h belongs to the RKHS space # spanned by H = S < ||h|»

» Rp does not depend on p, the dimension of the dynamic feature
mapping g(x; 0)

44 /49

Main theory — regret bound

Theorem

Let h = [h(x))]TE e RTK . Set J = ©(TL/)),
n=O((mTL+m\)~1) and S = 2Vh"H~th. Under the
overparameterized setting (m > 1), with probability at least 1 — §,

Rp = 5(\/%\/ max{d, 52}).

» h belongs to the RKHS space # spanned by H = S < ||h|»

» Rp does not depend on p, the dimension of the dynamic feature
mapping g(x; 6)

> Recover the regret for linear contextual bandit 6(d\/T)
(Abbasi-Yadkori et al. 2011)

45 /49

Takeaway message

» NeuralUCB uses neural network f(x;60;) to predict, gradient
g(x; ;) to explore

46 /49

Takeaway message

» NeuralUCB uses neural network f(x;60;) to predict, gradient
g(x; ;) to explore

> NeuralUCB achieves 5(@) regret, matches result for linear
setting

47 /49

Takeaway message

» NeuralUCB uses neural network f(x;60;) to predict, gradient
g(x; ;) to explore

> NeuralUCB achieves 5(\@) regret, matches result for linear
setting

» NeuralUCB also works well empirically

16001 — Linucs
14004 —— KernelUCB
BootstrappedNN
Neural e-Greedyq
NeuralUCBg
Neural e-Greedy
NeuralUCB

1200

1000

Regret

800

600

400

200

0 2000 4000 6000 8000 10000
Round

48 /49

Takeaway message

Regret

» NeuralUCB uses neural network f(x;60;) to predict, gradient

g(x; ;) to explore

> NeuralUCB achieves 5(@) regret, matches result for linear

» NeuralUCB also works well empirically

1600

1400

1200

1000

800

600

400

200

setting

—— LinUCB
—— KernelUCB
BootstrappedNN
—— Neural e-Greedyg
—— NeuralUCB,
—— Neural e-Greedy
—— NeuralUCB

0 2000 4000 6000 8000 10000

Round

Thank you!

49 /49

