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Label Noise is Ubiquitous and Troublesome

Label Noise can be Introduced by:
• Human or automatic annotators mistakenly (Yan et al. 2014; Veit et al. 2017)
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• ෤𝑦 is noisy label (observed), 𝑦 is clean label (unknown)
• Chanllenge:
Train with noisy data 𝐱, ෥𝒚 .
But require to give correct prediction 𝒚.
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• Noise Transition Matrix  𝑇. Each entry 𝜏𝑖𝑗 = 𝑃 ෤𝑦 = 𝑗 𝑦 = 𝑖):

𝑇 =

𝑐𝑎𝑡 𝑑𝑜𝑔 ℎ𝑢𝑚𝑎𝑛
𝑐𝑎𝑡 0.4 0.3 0.3
𝑑𝑜𝑔 0.3 0.4 0.3

ℎ𝑢𝑚𝑎𝑛 0.3 0.3 0.4
Uniform Noise

𝑇 =

𝑐𝑎𝑡 𝑑𝑜𝑔 ℎ𝑢𝑚𝑎𝑛
𝑐𝑎𝑡 0.6 0.4 0
𝑑𝑜𝑔 0.4 0.6 0

ℎ𝑢𝑚𝑎𝑛 0 0.4 0.6
Pairwise Noise
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Existing Solutions – Model Re-calibration
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• Introduce new loss term to get robust model:

1) Estimation of matrix 𝑇 to correct the loss term (Goldberger & Ben-Reuven, 2017; Patrini et al., 2017)
2) Robust deep learning layer (Van Rooyen et al., 2015)
3) Reconstruction loss term (Reed et al., 2014)

• Pros:

Globally regularization; theoretical guarantee

• Cons:

Not flexible enough; omit local information



Existing Solutions – Data Re-calibration

6

• Re-weighting or pick data point using noisy classifier
• Noisy classifier’s confidence determines the weight
• Clean labels gain higher weight
• Re-weighting and training happens jointly

• Pros:
Better performance than model re-calibration model.  Flexible enough to fully use point-wise information

• Cons:
No theoretical support 
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Contribution

• The first theoretic explanation for data re-calibration method
• Explained why noisy classifier to be used to decide whether a 

label is trustable or not.

• A theory inspired data re-calibrating algorithm 
• Easy to tune
• Scalable 
• Label Correction

Image Source: https://media.istockphoto.com/vectors/hand-drawn-vector-cartoon-illustration-of-a-broken-robot-trying-to-vector-

id1131797122?k=6&m=1131797122&s=612x612&w=0&h=H2fviprWr24dxlO2QPae1R8X3nrHB-J40NCunv2aE84=



(Noisy) Classifier and (Noisy) Posterior
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Classification scoring function f 𝑥 approximates posterior probability of labels:

• Clean (𝑥, 𝑦) : 𝑓(𝑥) approximates clean posterior 𝜂 𝑥 = 𝑃 𝑦 = 1 𝑥)

• Noisy (𝑥, ෤𝑦) : 𝑓(𝑥) approximates noisy posterior ෤𝜂 𝑥 = 𝑃 ෤𝑦 = 1 𝑥)
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Classification scoring function f 𝑥 approximates posterior probability of labels:

• Clean (𝑥, 𝑦) : 𝑓(𝑥) approximates clean posterior 𝜂 𝑥 = 𝑃 𝑦 = 1 𝑥)

• Noisy (𝑥, ෤𝑦) : 𝑓(𝑥) approximates noisy posterior ෤𝜂 𝑥 = 𝑃 𝑦 = 1 𝑥)

• There is a linear relationship ෤𝜂 𝑥 = (1 − 𝜏10 − 𝜏01)𝜂 𝑥 + 𝜏01

Remember 𝜏10 = 𝑃 ෤𝑦 = 0 𝑦 = 1) and 𝜏01 = 𝑃 ෤𝑦 = 1 𝑦 = 0)



Low Confidence of ෤𝜂 𝑥 Implies Noise 
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Theorem 1. Let 𝜖 ≔ 𝑓 − ෤𝜂 ∞ and for Δ =
1− 𝜏10−𝜏01

2
, there exists constant 𝐶, 𝜆 > 0

such that:

• ෤𝑦 = 1 ∶ 𝑃𝑟𝑜𝑏 𝑓 𝑥 ≤ Δ, ෤𝑦 𝑖𝑠 𝑐𝑙𝑒𝑎𝑛 ≤ 𝐶 𝑂 𝜖 𝜆

• ෤𝑦 = 0 ∶ 𝑃𝑟𝑜𝑏 1 − 𝑓 𝑥 ≤ Δ, ෤𝑦 𝑖𝑠 𝑐𝑙𝑒𝑎𝑛 ≤ 𝐶 𝑂 𝜖 𝜆
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Theorem 1. Let 𝜖 ≔ 𝑓 − ෤𝜂 ∞, there exists constant 𝐶, 𝜆 > 0 and Δ ∈ (0, 1), such that:

• ෤𝑦 = 1 ∶ 𝑃𝑟𝑜𝑏 𝑓 𝑥 ≤ Δ, ෤𝑦 𝑖𝑠 𝑐𝑙𝑒𝑎𝑛 ≤ 𝐶 𝑂 𝜖 𝜆

• ෤𝑦 = 0 ∶ 𝑃𝑟𝑜𝑏 1 − 𝑓 𝑥 ≤ Δ, ෤𝑦 𝑖𝑠 𝑐𝑙𝑒𝑎𝑛 ≤ 𝐶 𝑂 𝜖 𝜆
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Inconfidence of ෤𝜂 𝑥 Implies Noise 
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Tsybakov Condition

• Tsybakov Condition [2004].  There exists constants 𝐶, 𝜆 > 0 and 𝑡0 ∈ ቀ ቃ0,
1

2
, such that for all 𝑡 ≤ 𝑡0,

𝑃 𝜂 𝑥 −
1

2
≤ 𝑡 ≤ 𝐶𝑡𝜆
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Tsybakov Condition

• Tsybakov Condition [2004].  There exists constants 𝐶, 𝜆 > 0 and 𝑡0 ∈ ቀ ቃ0,
1

2
, such that for all 𝑡 ≤ 𝑡0,

𝑃 𝜂 𝑥 −
1

2
≤ 𝑡 ≤ 𝐶𝑡𝜆

• Empirical Verification (CIFAR-10) : መ𝐶 = 0.32 and መ𝜆 = 1.04 . Statistically Significant
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Inconfidence of ෤𝜂 𝑥 Implies Noise 

Theorem 1. Let 𝜖 ≔ 𝑓 − ෤𝜂 ∞, there exists constant 𝐶, 𝜆 > 0 and Δ ∈ (0, 1), such that:

• ෤𝑦 = 1 ∶ 𝑃𝑟𝑜𝑏 𝑓 𝑥 ≤ Δ, ෤𝑦 𝑖𝑠 𝑐𝑙𝑒𝑎𝑛 ≤ 0.23 𝑂 𝜖 1.04

• ෤𝑦 = 0 ∶ 𝑃𝑟𝑜𝑏 1 − 𝑓 𝑥 ≤ Δ, ෤𝑦 𝑖𝑠 𝑐𝑙𝑒𝑎𝑛 ≤ 0.23 𝑂 𝜖 1.04



Theory-Inspired Algorithm
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Corollary 1. Let 𝜖 ≔ max 𝑓 𝑥 − ෤𝜂(𝑥) . 
If ෤𝑦𝑛𝑒𝑤 denotes the output of the LRT-Correction 
with input x, ෤y , f and 𝛿 then ∃C, 𝜆 > 0 : 

𝑃𝑟𝑜𝑏 ෤𝑦𝑛𝑒𝑤 is clean > 1 − 𝐶 𝑂 𝜖 𝜆

Remark:

The extension to multi-class would be natural



AdaCorr: Using LRT-Correction During Training

Step 1: Train 𝑓(𝑥) using (𝑥, ෤𝑦)

Step 2: Applying LRT-Correction using (𝑥, ෤𝑦), 𝑓(𝑥) and 𝛿

Step 3: Let ෤y = ෤𝑦𝑛𝑒𝑤

Step 4: Repeat Step 1~3
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Remark: 
In step 1, to get a good approximation of ෤𝜂(𝑥), we 
train 𝑓(𝑥) with (𝑥, ෤𝑦) for several warm-up epochs



Experiment - Setting

Data Sets: 
• MNIST (LeCun & Cortes, 2010); 
• CIFAR-10/CIFAR-100 (Krizhevsky et al., 2009); 
• ModelNet40 (Z. Wu & Xiao, 2015)
• Clothing 1M (Xiao et al., 2015)

Base Lines: 
• Forward Correction (Patrini et al., 2017) 
• Decoupling (Malach & Shalev-Schwartz 2017)
• Forgetting (Arpit et al., 2017) 
• Co-teaching (Han et al., 2018)
• MentorNet (Jiang et al., 2018)
• Abstention (Thulasidasan et al., 2019)

Backbone for every baseline: 
• Preactive ResNet-34 (He et al., 2016) for MNIST; CIFAR10/100.  
• ModelNet40 (Qi et al.) for Point Cloud.  
• ResNet-50 for Cloth 1M

Epochs for every baseline: 180 epochs

Optimizer for every baseline: RAdam (Liu et al., 2019) 

Learning Rate: 0.001 at beginning and decayed 0.5 for every 60 epochs

Hyper-parameter for AdaCorr：

• 30 epochs as Burning-in Period

• Initial 1/𝛿 is set to be 1.2 and decreased by 0.02 every epoch 
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Experiment - Performance
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Experiment - Performance
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Conclusion

• We addressed the training with label noise problem

• We provided the first theoretical justification for data re-calibration methods
• We prove that noisy classifier can be used to decide the purity of the label

• We proposed a new theory inspired algorithm
• scalable ; easy to tune; good performance.
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Code will be available on GitHub: https://github.com/pingqingsheng/LRT

Thanks for watching

https://github.com/pingqingsheng/LRT

