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Motivation: Loci of Knowledge in RL

e Common structures to store knowledge in RL
o Policies, value functions, models, state representations, ...
e Uncommon structure: reward function
o Typically from environment & immutable
e Existing methods to store knowledge in rewards are hand-designed

(e.g. reward shaping, novelty-based reward).

e Research questions
o Can we “learn” a useful intrinsic reward function in a data-driven way?
o What kind of knowledge can be captured by a learned reward function?
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Overview

e A scalable meta-gradient framework for learning useful intrinsic
reward functions across multiple lifetimes

e |earned intrinsic rewards can capture
o interesting regularities that are useful for exploration/exploitation
o knowledge that generalises to different learning agents and different
environment dynamics
o “what to do” instead of “how to do”
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Problem Formulation: Optimal Reward Framework!Singh etal. 2010]

e Lifetime: an agent’s entire training time which consists of many
episodes and parameter updates (say N) given a task drawn from
some distribution.
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Problem Formulation: Optimal Reward Framework!Singh etal. 2010]

e Lifetime: an agent’s entire training time which consists of many
episodes and parameter updates (say N) given a task drawn from
some distribution.

e Intrinsic reward: mapping from a history to a scalar.

o Acts as areward function when updating an agent’s parameters.
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Problem Formulation: Optimal Reward Framework!Singh etal. 2010]

e Optimal Reward Problem: learn a single intrinsic reward function
across multiple lifetimes that is optimal to train any randomly
initialised policies to maximise their extrinsic rewards.
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Under-explored Aspects of Good Intrinsic Rewards
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Under-explored Aspects of Good Intrinsic Rewards

e Should take into account the entire lifetime history for exploration
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Under-explored Aspects of Good Intrinsic Rewards

e Should take into account the entire lifetime history for exploration

e Should maximise long-term lifetime return rather than episodic return

to give more room for balancing exploration and exploitation across

multiple episodes
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Method: Truncated Meta-Gradients with Bootstrapping

e Inner loop: unroll the computation graph until the end of the lifetime.
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Method: Truncated Meta-Gradients with Bootstrapping

e Inner loop: unroll the computation graph until the end of the lifetime.

e Outer loop: compute the meta-gradient w.r.t. the intrinsic rewards by
back-propagating through the entire lifetime.
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Method: Truncated Meta-Gradients with Bootstrapping

e Inner loop: unroll the computation graph until the end of the lifetime.

e Outer loop: compute the meta-gradient w.r.t. the intrinsic rewards by
back-propagating through the entire lifetime.

e O e O e O R O
nnerloop (Hn b—{ 61 —>{ (/o }—>--------
Outer loop @ "l @ d @ no Glife

Challenge: cannot unroll the full graph due to the memory constraint.
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Method: Truncated Meta-Gradients with Bootstrapping

e Truncate the computation graph up to a few parameter updates.

e Use a lifetime value function to approximate the remaining rewards.

o Assign credits to actions that lead to a larger lifetime return.
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Experiments: Methodology

e Design a domain and a set of tasks with specific regularities

e Train an intrinsic reward function across multiple lifetimes

e Fix the intrinsic reward function and evaluate and analyse it on a new
lifetime
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Experiment: Exploring uncertain states

e Task: find and reach the goal location (invisible).
o Randomly sampled for each lifetime but fixed within a lifetime.
e An episode terminates if the agent reaches the goal.

Agent
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Experiment: Exploring uncertain states

e The learned intrinsic reward encourages the agent to explore uncertain
states (more efficient than count-based exploration).

(a) Room instance (b) Intrinsic (ours) (c) Extrinsic (d) Count-based
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Experiment: Exploring uncertain objects

Task: find and collect the largest rewarding object.

o Reward for each object is randomly sampled for each lifetime.

Requires multi-episode exploration.

Good or bad

Mildly good
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Experiment: Exploring uncertain objects

e The intrinsic reward has learned to encourage exploring uncertain
objects (A and C) while avoiding harmful object (B).
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Experiment: Exploring uncertain objects

e The intrinsic reward has learned to encourage exploring uncertain
objects (A and C) while avoiding harmful object (B).

Episode 1 Episode 2 Episode 3

Visualisation of learned intrinsic rewards for each trajectory
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Experiment: Dealing with non-stationary tasks

The rewards for A and C exchange periodically within a lifetime
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Episode Return

Experiment: Dealing with non-stationary tasks
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The rewards for A and C exchange periodically within a lifetime
The intrinsic reward starts to give negative rewards to increase

entropy in anticipation of the change (green box).
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Episode Return

Experiment: Dealing with non-stationary tasks

|
N
1

The rewards for A and C exchange periodically within a lifetime
The intrinsic reward starts to give negative rewards to increase

entropy in anticipation of the change (green box). ]

The intrinsic reward has learned not to fully commit to the
optimal behaviour in anticipation of environment changes.

|
»
1

mmm [ntrinsic
EEm Extrinsic

470

/ Change ]
T T 1 0.0 T . T —
480 490 500 510 520 530 470 480 49 52

0 500 510
Episodes Episodes

o 530 @




Performance (v.s. Handcrafted Intrinsic Rewards)

e |earned rewards > hand-designed rewards
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Performance (v.s. Policy Transfer Methods)

e Our method outperformed MAML and matched the final performance

of RL?2

o Our method needed to train a random policy from scratch while

RL? started with a good initial policy
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Generalisation to unseen agent-environment interfaces

e The learned intrinsic reward could generalise to
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Generalisation to unseen agent-environment interfaces

The learned intrinsic reward could generalise to

o Different action spaces
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Generalisation to unseen agent-environment interfaces

The learned intrinsic reward could generalise to

O

©)

Episode Return

Different action spaces

Different inner-loop RL algorithms (Q-learning)
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Generalisation to unseen agent-environment interfaces

e The learned intrinsic reward could generalise to
o Different action spaces
o Different inner-loop RL algorithms (Q-learning)
e The intrinsic reward captures “what to do” instead of “how to do”
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Ablation Study

e Lifetime history is crucial for exploration
e Lifetime return allows cross-episode exploration & exploitation
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Takeaways / Limitations / Next steps

Takeaways

e Learned intrinsic rewards can capture
o interesting regularities that are useful for exploration/exploitation
o knowledge that generalises to different learning agents
o “what to do” instead of “how to do”

Limitations
e Empirical studies are conducted on toy domains.
Next steps

e |earning intrinsic rewards in much richer environments
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Thank you!

Contact us

e /Zeyu Zheng: zeyu@umich.edu
e Junhyuk Oh: junhyuk@google.com
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