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Black-box Optimization

The relationship from x to y is through the black-box.

Input x Black-box OUtpUt:y = f(x)
f(x)

looking for this maximizer
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Properties of Black-box Function

fXeERt>Y eR?

X

y =f()
input f(x) output

Function form is not known V=ax+b

No derivative form j—x’><

Expensive to evaluate (in time and cost)

Nothing is known about the function, except a few evaluations y = f(x)
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Bayesian Optimization Overview

Refine output y

Bayes Opt : f(x)

input x

exploit
Acquisition function ¢ (x) = u(x) + Kk X o (x)

o Make a series of evaluations x¢, x5,

explore
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@ Bayes Opt with Known Optimum Value
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Knowing Optimum Value of The Black-Box

@ We consider situations where the optimum value is known.
o f* =max f(x) and the goal is to find x* = arg max f (x).

f ~ GP(0,K)

Unknown Location x*

_____ Known Value f|

Vu Nguyen Knowing the what, but not the where in Bayes Opt



Examples of Knowing Optimal Value of The Black-Box

@ Deep reinforcement learning:

o CartPole: 200 f ~ GP(0,K)
@ Pong: 18 Unknown Location.x

______ Known Value f]
@ Frozen Lake: 0.79 + 0.05
o InvertedPendulum: 950

-
—
—

@ Classification: /
. - f(x) ¢ Ob s LK) o(x)
@ Skin dataset: Accuracy 100 " ’ |

@ |[nverse optimization:

@ Given a database and a target property t, identifying a
corresponding data point x™.
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What can f~ tell us about f ?

@ [ tells us about the upper bound: f* = f(x),Vx

@ [ tells us that the function is reaching f™ at some points.

f~ GP(0,K)

Unknown Location.x
_______ Known Value f]
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Transformed Gaussian process

1
f)=f" =359 g(x) ~ GP(y2f*,K)

=0

This condition ensures that f* > f(x), Vx @
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We want to control the surrogate using f~

@Push down: the surrogate must not go above f*

standard GP
f(x)isabove f*

transformed GP
below f*
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Transformed Gaussian process

o f(x) = f* = g% (x) g(x) ~ GP(0,K)

Zero mean prior !
=0

@ This condition encourages that there is a point where

g(x) = 0andthus f* = f(x) @
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We want to control the surrogate using [~

@Lift up: the surrogate should reach f~

Known Value f*

standard GP

f(x) does
not reach f~

Unknown Location x™

transformed GP

reach f* _ )‘"‘

= f(X) ® Obs ---- ux)
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Transformed Gaussian process

@ Linearization using Taylor expansion

1
FOO =~ F1 =5 1300 = 1y (D[g () = g ()]

1
=+ 51300 — 1y (D)

@ Linear transformation of a GP remains Gaussian

1
MOEYEET16)
0(%) = g ()05 (Xpty ()
e The predictive distribution p(x) ~ N (u(x), o(x))

@ Taylor expansion is very accurate at the mode which is ,ué (x)
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@ Bayes Opt with Known Optimum Value [~
]
o Exploiting f~
e Building better surrogate model

o|Making informed decision
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Confidence Bound Minimization

@ Under GP surrogate model, we have this condition w.h.p.
Upper bound

——
-
---—_-‘-h. "-
- .
~

Lower bound

m—— (%) ¢ Obs ———= u(x) o(x)

I |

where [; is defined following [Srinivas et al 2010]. This means

{l(x*) — \/Ea(x*}) < f(fc*) = f{ < \u(x*) + \/Ea(x*})
| |

Lower bound unknown  known Upper bound

\ can be estimated Vx /
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Confidence Bound Minimization

@ The best candidate for x™ is where the bound is tight

x; = argmin|u(x) — f*] + Bro(x)

Upper bound

———
-
.-__......-.._._-h ,‘—
- T
-

Lower bound

— (%) ¢ Obs -——- u(x) o(x)

[

@ The inequality becomes equality at the true x™ location where
u(x™) —/Bro(x*) = fT* = p(x*) + /Bro(x”)
Lower 'bound known Upp('ar bound

when u(x*) = f*ando(x*) =0
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Expected Regret Minimization

@ Regretr = f* — f(x;) where f* = max f(x), Vx
@ Finding the optimum location x™ = minimizing the regret.
@ We can select the next point by minimizing the expected regret.

X; ] = arg ;21; PR (x) = arg EIQQE r(x)]
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Expected Regret Minimization

e Using analytical derivation, we derive the closed-form
computation for ERM.

aERMA" (x) = a(x) X ¢(2) + [f* — u(x)] X P(x)
= ()] / T T

Gaussian PDF Gaussian CDF

Z= o(x)

GP variance GP mean

@ See the paper for details!
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Existing Baselines

The Proposed

Unknown Location x~

Known Value f|
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The GP transformation is helpful in high dimension

Log of Simple Regret
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XGBoost Classification and DRL

XGBoost Classmatmn D= E

104,00
@ Skin dataset UCI f* = 100
59.50
Variables Min | Max | Found x* % G
min child weight 1 20 4.66 g 09.00
colsample bytree | 0.1 1 0.99 < sars- -
max depth 5 15 9.71 0504 |.4.| GP-UCB —— EWF' —4 CBM+f"
subsample 0.5 1 0.77 sazs ~H E MES+" —4— ERM+f
alpha 0 10 0.82 0 5 10 | 1l!il 20 25 30
teration
gamma 0 10 0.51
Advantage Actor Critic on CartPole D=3
200 -
} -
sz=zza
e CartPole DRL f* = 200 F
) T 140+
Variables Min | Max | Best Parameter x* émn_
-4 GP-UCB MES+f"
Td.lscount factor 0.?6 1 0.95586 00| - B —4 CBM+f*
learning rate ¢ model | le 0.01 0.00589 ) T 4 El+f —+— ERM+f'
learning rate v model le=® | 0.01 0.00037 , , : , , : ,
o ] il 15 20 25 3l

Iteration
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Mis-specified f* will degrade the performance

e Under-specified f* smaller than the true f*
@ More serious, as the algorithm will get stuck.

e Over-specified f* greater than the true f~

@ Less serious, but still poor performance.
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Take Home Messages

@ Bayes opt is efficient for optimizing the black-box function

@ When the optimum value is known, we can exploit this
knowledge for better optimization.

Unknow

Known Value f*

f(x)

—— f(X) ¢ Obs --== u(x) m o(x)
|
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Question and Answer

vu@robots.ox.ac.uk
o @nguyentienvu
@ https://ntienvu.github.io
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