
Adaptive Sketching for Fast and Convergent
Canonical Polyadic Decomposition

Alex Gittens, Kareem S. Aggour, Bulent Yener

Rensselaer Polytechnic Institute, Troy, NY



Problem

X ∈ RI×J×K is a huge tensor (multidimensional array). Quickly
find an accurate low-rank approximation (LRA) to X .

!I

J
K

"a1

b1

c1

a2

b2

c2

= + +



Motivation/Applications

As a generalization of the SVD to higher-order relations in data:

I data mining and compression

I video/time-series analysis

I latent variable models (clustering, GMMs, HMMs, LDA, etc.)

I natural language processing (word embeddings)

I link prediction in hypergraphs

I ... many, many more



Canonical Polyadic Decomposition

For tensors, define the outer product of three vectors:

(a ◦ b ◦ c)`,m,p = a`bmcp.

Tensor LRA: Given a tensor X ∈ RI×J×K , learn factor matrices
A ∈ RI×R ,B ∈ RJ×R ,C ∈ RK×R that explain each of its modes,
by minimizing the sum-of-squares error

arg min
A,B,C

∥∥∥∥∥X − R

∑
i=1

ai ◦ bi ◦ ci

∥∥∥∥∥
2

F

=

arg min
A,B,C

‖X − JA;B;CK‖2F

Called a Canonical Polyadic decomposition (CPD) of rank R.



Tensor LRA is non-convex, and non-trivial. Even determining rank
is NP-hard.

We relax our goal. No longer try to find globally best factors
A,B,C, but to find local optima of objective

F (A,B,C) = ‖X − JA;B;CK‖F .

All approaches are iterative.



Our Contributions

We consider the use of sketching and regularization to obtain
faster CPD approximations to tensors.

I We prove for the first time that sketched, regularized CPD
approximation converges to an approximate critical point if
the sketching rates are chosen appropriately at each step.

I We introduce a heuristic that selects the sketching rate
adaptively and in practice has superior error-time tradeoffs to
prior state-of-the-art sketched CPD heuristics. It greatly
ameliorates the hyperparameter selection problem for sketched
CPD.



Example error-time tradeoff
100GB rank 5 synthetic tensor with ill-conditioned factors.
CPD-MWU uses five rates: four from [10−6, 10−4] and 1.
Sketched CPD uses hand-tuned rate.



Classic CPD-ALS

The classical iterative algorithm for finding CPDs is ALS, a
Gauss-Siedel/block coordinate descent algorithm:

At+1 = arg min
A
‖X − JA;Bt ;CtK‖2F

Bt+1 = arg min
B
‖X − JAt+1;B;CtK‖2F

Ct+1 = arg min
C
‖X − JAt+1;Bt+1;CK‖2F

This constructs a sequence of LRAs whose approximation error is
non-increasing. Under reasonable conditions these approximations
converge to a critical point.



The sum-of-squares error is invariant to the shape of the tensor, so
we solve these subproblems as matrix problems.

At+1 = arg min
A

∥∥∥X(1) −A(Bt �Ct)
T
∥∥∥2
F

Bt+1 = arg min
B

∥∥∥X(2) −B(Ct �At+1)
T
∥∥∥2
F

Ct+1 = arg min
C

∥∥∥X(3) −C(Bt+1 �At+1)
T
∥∥∥2
F

Classic CPD-ALS consists of a series of matrix least-squares
problems.



Drawbacks of classical CPD-ALS: these are huge, potentially
ill-conditioned least-squares problems.

I Expensive Iterations: each round of ALS takes
O((JK + IK + IJ)R2 + JKI ) time

I Many Iterations: The number of rounds to convergence
depends on the conditioning of the linear-systems.



Two (separate, until our work) remedies:

I Add regularization to improve the conditioning of the linear
solves (scientific computing community)

I Use sketching to reduce the size of the linear systems
(theoretical computer science community)



Proximal regularization requires that the factor matrices stay close
to their previous values.

At+1 = arg min
A

∥∥∥X(1) −A(Bt �Ct)
T
∥∥∥2
F
+ λ‖A−At‖2F

Bt+1 = arg min
B

∥∥∥X(2) −B(Ct �At+1)
T
∥∥∥2
F
+ λ‖B−Bt‖2F

Ct+1 = arg min
C

∥∥∥X(3) −C(Bt+1 �At+1)
T
∥∥∥2
F
+ λ‖C−Ct‖2F

This Regularized ALS (RALS) algorithm is known to have the
same critical points as the original CPD-ALS formulation, in the
deterministic case, and to help avoid swamping.



Sketching for CPD

Natural to think of sketching: sample the constraints to reduce the
size of the problem. Runtime will decrease, but accuracy should
not be too affected.

(𝑩𝒕⨀ 𝑪𝒕)𝑻

𝑿(𝟏) 𝑨

JK JKr

-

𝑿(𝟏)𝑺 (𝑩𝒕⨀ 𝑪𝒕)𝑻𝑺

Prior work has considered sketched CPD-ALS heuristics:

1. From the scientific computing community: Battaglino,
Ballard, Kolda. A Practical Randomized CP Tensor
Decomposition. SIMAX 2018

2. From the TCS/ML community: Cheng, Peng, Liu, Perros.
SPALS: Fast Alternating Least Squares via Implicit Leverage
Scores Sampling. NIPS 2016.



Prior sketched CPD-ALS heuristics:

1. Provide guarantees on each individual least squares problem,
e.g.

‖X − JAt+1;Bt ;Ct‖2F ≤ (1 + ε)‖X − JA∗t+1;Bt ;CtK‖2F ,

so potentially the error can increase at each iteration.

2. Use fixed sketching rates. Hyperparameter selection is a
problem.

3. Remain vulnerable to ‘swamping’ caused by ill-conditioned
linear systems.



It is important to have guarantees on the behavior of these
algorithms:

I CPD is a non-convex problem, so it’s possible for intuitively
reasonable heuristics to fail

I HYPERPARAMETER SELECTION IS IMPORTANT
AND EXPENSIVE: how should we choose the sketching
rates? Why should there be a good fixed sketching rate?

I Stopping criteria implicitly assume convergence, otherwise
they do not make sense

Questions:

I how to ensure monotonic decrease of approximation error?

I how to ensure convergence to a critical point?

I how to choose sketching rates and regularization parameter?



Theoretical Contribution

We look at proximally regularized sketched least squares algorithms
and argue that:

I Each sketched least squares solve decreases the objective
almost as much as a full least squares solve (must assume
sketching rates are high enough)

I This decrease can be related to the size of the gradient of the
CPD objective

I Proximal regularization ensures that the gradient is bounded
away from zero

I Thus progress is made at each step, obtaining a sublinear rate
of convergence to an approximate critical point



Guaranteed Decrease

Fix a failure probability δ ∈ (0, 1) and a precision ε ∈ (0, 1). Let S
be a random sketching matrix that samples at least
` = O

(
1

νε2δ
R log(Rδ )

)
columns. Update

At+1 = arg min
A
‖(X(1) −AM)S‖2F + λt+1‖A−At‖2F ,

with λt+1 = o(σ2
min(M)). The sum-of-squares error F of At+1

satisfies

F (At+1,Bt ,Ct) ≤ F (At ,Bt ,Ct)− (1− εt+1)‖RPMT ‖2F ,

with probabilty at least 1− δ.



Consequence for sketching rate

ν is related to an ‘angle’ between R and M.

Range(𝑴()

𝑹

Initially R and M have a small
angle, so even aggressive
sketching preserves the angle.

Range(𝑴()

𝑹

Near convergence R and M have
a large angle, so preserving the
angle requires more expensive
sketching.

We do not expect convergence if a static sketching rate is
used throughout!



Adaptation of standard results now leads to a convergence
guarantee.

Sublinear convergence

If the sketching rates are selected to ensure sufficient decrease at
each iteration with probability at least (1− δ), and the precisions
εt+1 are bounded away from one, then regularized sketched
CPD-ALS visits a O(T−1/2)-approximate critical point in T
iterations with probability at least (1− δ)T :

min
1≤i≤T

‖∇F (Ai ,Bi ,Ci )‖F = O

(√
F (A0,B0,C0)

T

)
.



Important takeways:

I Running the algorithm for more time continues to increase the
accuracy of the solution

I Gradient-based termination conditions can be used, because
eventually the gradient will be small.

Note that prior sketched CPD-ALS algorithms did not come with
these guarantees (indeed, more time does not continue to increase
accuracy for them, empirically)

But . . . in practice, how to choose the sketching rate? We can’t
realistically compute ν.



A new heuristic: online sketching rate selection

Key observation: low-rank approximation is an iterative process.

1. As in SGD, when closer to convergence, more constraints
need to be sampled to ensure progress.

2. The performance of a given sketching rate historically is
predictive of future performance.

This suggests an online approach to learning the performance of
the sketching rates.

Adaptive sketching rate selection: choose the best of N
sketching rates, to maximize reductions in the error, while
minimizing runtime.



We employ label efficient multiplicative weights update. Given
sketching rates {s1, . . . , sN},

1. Quality of sketching rate i at iteration t is

`i ,t =
‖X − JAt+1;Bt+1;Ct+1K‖F − ‖X − JAt ;Bt ;CtK‖F

runtime(i)‖X ‖F

where the factor updates are computed using sketching rate si
and take time runtime(i).

2. At t = 0, wi ,0 = 1 for i = 1, . . . ,N. At each subsequent
iteration, with probability ε, update all the weights

wi ,t+1 = wi ,texp
(
−η

`i ,t
ε

)
.

3. At each iteration use a sketching rate selected with probability
proportional to wi ,t to compute At+1,Bt+1,Ct+1 using
column sampling.



Notes:

1. ε > 0 determines update frequency

2. η > 0 determines aggressiveness of weight updates

3. Computing `i ,t for all N arms requires N CPD solves, so take
ε ≈ 1

N in practice

4. Take one arm to be fully constrained CPD-ALS to ensure that
convergence is possible



Park bench video decomposition
Rank 250 decomposition of a 5GB tensor. Five rates for
CPD-MWU: four in [10−6, 10−4] and 1.

ε Std(ε) Time Std(Time)
CPD-ALS 0.5153 1.74*10−3 618.84 9.69

Sketched CPD 0.5148 1.54*10−3 564.53 22.20
CPD-MWU 0.5069 6.57*10−3 444.58 70.79



Knowledge Base Mining (NELL dataset)

Rank 30 approximation of 302MB database. Target stopping error
set by running exact ALS for 30 minutes. All algorithms allowed to
run for up to 30 minutes.

ε Std(ε) Time Std(Time)

SPALS 0.104 0.0061 1829.36 14.84
CPRAND 0.072 0.0046 1806.70 3.50
CPD-ALS 0.060 0.0002 1044.75 386.03

CPD-MWU 0.058 0.0015 354.55 224.59

Even accounting for standard deviations, CPD-MWU is around 2x
faster and as accurate as CPD-ALS.



Knowledge Base Mining (NELL dataset)

Rank 30 approximation of 302MB database. Target stopping error
set by running exact ALS for 30 minutes. All algorithms allowed to
run for up to 2 hours.

ε Std(ε) Time Std(Time)

SPALS 0.098 0.0045 7224.28 18.50
CPRAND-MIX 0.066 0.0039 7205.37 4.03

CPD-ALS + MIX 0.060 0.0002 1007.48 372.58
CPD-MWU + MIX 0.058 0.0015 337.16 204.28

CPD-MWU finishes in same amount of time. The other sketched
CPD-ALS algorithms still do not coverge in over 2 hours.

Takeaway: you need to select the sketching rate appropriately at
each iteration. Static sketching is inappropriate.



To recap:

I Established convergence of regularized sketched CPD-ALS
algorithms when sketching rate is appropriately chosen

I Introduced CPD-MWU, a heuristic for choosing the sketching
rates

I Demonstrated empirically the superior performance of
CPD-MWU to prior sketched CPD-ALS algorithms

Future directions:

I Is the convergence rate truly only sublinear?

I Jointly choose regularization and sketching rates to accelerate
convergence?

I Remove the requirement that finite sketching rates be selected
for CPD-MWU

I Apply adaptive sketching to constrained tensor factorizations



Thank you!



Here’s an example of matricizations in the different modes:

13 17 21
14 18 22
15
16

19
20

23
24𝓧 =				

1 5 9
2 6 10
3
4

7
8

11
12

𝑿(𝟏) = 			
1 5 9
2 6 10
3
4

7
8

11
12

13 17 21
14 18 22
15
16

19
20

23
24

𝑿(𝟐) = 			
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

𝑿(𝟑) = 			
1 2 3
13 14 15

4 5 6
16 17 18

7 8 9
19 20 21

10 11 12
22 23 24



X�Y denotes the column-wise Khatri-Rao product: if X ∈ RI×R

and Y ∈ RJ×R , then X�Y ∈ RIJ×R . An example:

X =

1 2
3 4
5 6

 ,Y =

a b
c d
e f

⇒ X�Y =



a 2b
c 2d
e 2f

3a 4b
3c 4d
3e 4f
5a 6b
5c 6d
5e 6f





We found experimentally that proximal regularization and
sketching synergize:



The first step is showing that the error decreases by a fraction of
the maximum possible decrease at each iteration.

Consider the update for factor matrix A. Let M = (Bt �Ct)T .
The update

At+1 = arg min
A
‖(X(1) −AM)S‖2F + λt+1‖A−At‖2F ,

can be rewritten in terms of ∆ = At+1 −At as

At+1 = At + arg min
∆
‖(R− ∆M)S‖2F + λt+1‖∆‖2F ,

where R = X(1) −AtM is the residual from the previous A factor.

The only portion of the residual that can be captured is RPMT ,
the projection of the residual onto the row span of M.



Thus the level of the sketching needed depends on how much of
the residual can be captured by the optimal At+1:

I ‖RPMT ‖2F is exactly the maximum decrease possible: this
happens when At+1 is chosen optimally.

I ν = ‖RPMT ‖2F /‖R‖2F quantifies how much of the residual
can be captured by the optimal At+1. This quantity is small
when the residual is orthogonal to M.

I When ν ≈ 1, you can sketch aggressively, otherwise you need
to sketch more conservatively.



Practical questions

I How does CPD-MWU perform relative to classical CPD-ALS
and prior sketched CPD-ALS algorithms (CPRAND from the
scientific computing community and SPALS from the
TCS/ML community) in terms of runtime and accuracy?

I Does CPD-MWU ameliorate the hyperparameter selection
problem for the sketching rate?

I Does CPD-MWU allow for convergence?



Error-time tradeoff
100GB rank 5 synthetic tensor with ill-conditioned factors.
CPD-MWU uses five rates: four from [10−6, 10−4] and 1.
Sketched CPD uses hand-tuned rate.



Evolution of sketching rates’ weights over time

Same setup: starts off with aggressive sketching, becomes more
conservative.



Impact of the sketching rate range

Decomposing a 1TB ill-conditioned rank 5 synthetic tensor.

four rates in [10−6, 10−4] and 1 four rates in [10−9, 10−6] and 1

CPD-RDyn randomly selects rates from the five choices. Sketched
CPD uses the best sketching rate (not equal to 1) from the five
choices.



Impact of number of sketching rates

Residual error when decomposing an ill-conditioned tensor with
increasing numbers of sketching rates,
N ∈ {5, 10, 50, 100, 500, 1000}.


