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Introduction

® Aim: Estimate the individualized effects of time-dependent
treatments.
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e All existing methods for estimating treatment effects over time
assume that there are no hidden confounders.
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Hidden confounders

® Hidden confounders introduce bias when estimating treatment effects
over time.
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Hidden confounders

¢ Hidden confounders introduce bias when estimating treatment effects
over time.

A Treatmentl @ Treatment2 O Treatment 3

I Patient history H

w !

3 |

2 | )

.. E[Y [ ]] | H]

5 A A A A . _

il Be] @Bl Ba [B6 ! E[Y[[a"al] | H]
ty to tg ty

® Proposed solution: infer latent variables that capture the
dependencies in the treatment assignments over time and can be used
as substitutes for the hidden confounders.
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Problem formalism

® QObservational data for each patient:
» Time-dependent patient covariates:

Xt = (X]_,...,Xt)
» Time-dependent treatments:

A.=(AL,...,A,), where A; = [A ... Ayl

» Observed patient outcome given history of covariates X; and
treatments A;: Yy 1.
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Potential outcomes

® Use the potential outcomes framework (Rubin (1978), Neyman
(1923), Robins & Hernan (2008)).

¢ Estimate individualized treatment effects, i.e. potential outcomes
under treatment plan a>; conditional on patient history at timestep t:

E[Y(a>:) | A1, X]

® Assume consistency and positivity.
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Potential outcomes and hidden confounders

e Estimate individualized treatment effects, i.e. potential outcomes
under treatment plan a>; conditional on patient history at timestep t:

E[Y(azt) ’ At—la)_(t]
e All existing methods assume that there are no hidden confounders:
Y(as:) 1L A; | X;,A;_1 for all a>; and for all t,

which is untestable in practice.
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Hidden confounders - from static to temporal setting

® The Blessing of Multiple Causes (Wang & Blei, 2019):
> Static causal inference setting.

» Hidden confounders introduce dependencies in the treatment
assignments.

» Infer latent variables that capture these dependencies and render the
treatments conditionally independent.

® |n the temporal setting, the hidden confounders may change over
time and may be affected by past treatments and covariates.
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Time Series Deconfounder - Main ideas
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¢ Hidden confounders may vary over time and may be affected by
previous treatments and covariates.
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Time Series Deconfounder - Main ideas

A Treatment1l @ Treatment2 () Treatment 3

Patient history H

Patient covariates X

e Take advantage of the way multiple treatments are assigned over time
to infer substitutes for the hidden confounders.

zt:(Z]_,...,Zt)

e Augment the observational dataset with Z; and use an outcome
model to obtain unbiased estimates of the treatment effects.
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Time Series Deconfounder - Factor model

Step 1: Fit factor model over time to infer substitutes for the hidden
confounders.

e At time t construct the latent variable Z; as a function of history
H: 1 = (At-1,X¢-1,Z¢-1), such that:

k

P(Atly ooy Atk ’ Ztyxt) = HP(Atj ‘ ZtaXt)-
j=1
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Time Series Deconfounder - Factor model

Step 1: Fit factor model over time to infer substitutes for the hidden
confounders.

® Factor model of the assigned treatments has joint distribution:

p(0r.k,X7,Z7,a7) = p(O1:4)P(XT)
K

r
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Time Series Deconfounder - Factor model

Assumption (Sequential single strong ignorability)

Y(as¢) 1L Ay | Xe, Heo,
Vas>;and Vt € {0,..., T} and Vj € {1,... k}.
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Time Series Deconfounder - Sequential strong ignorability

Theorem

If the distribution of the assigned causes p(aT) can be written as the

factor model p(01.x,XT,ZT,aT), we obtain sequential ignorable treatment
assignment:

Y(E_th) AL (Atla oo 7Atk) ’ A1.“—1a xta 21’7
for all a>; and for all t € {0,..., T}.
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Evaluate factor model

¢ Use predictive checks (Rubin, 1984) to asses how well the factor
model captures the distribution of treatments at each timestep.

® The inferred substitutes for the hidden confounders Z; also need to
satisfy positivity, i.e.

P(At = at ‘ At_]_ = 5!’—17 zt = it,)_(t — )_(t) > 0
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Time Series Deconfounder - Qutcome model

Step 2: Sample Z = [21 .. Zt] from the factor model and fit an
outcome model to estimate:

E[Y | as¢, Ar1,Xt, Z] = E[Y(a>¢) | Ar—1, X, Z4].

Example outcome models: Marginal Structural Models (Robins et al.
2000), Recurrent Marginal Structural Networks (Lim et al., 2018).
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Proposed factor model architecture

® Proposed architecture for the factor model: recurrent neural network
(RNN) with multitask output and variational dropout.

p(Avy | X4, Z1) (Ao | X2, Zs) p(Apy | X, Z7) DA | X0 Ze) plAis [ X Ze)  p(Ack | Xe.Z)
FC Layers FC Layers FC Layers FC Layers FClLayers| FC Layers
Gk 9}C /) e 01 02 919

ul aul Eﬁ
\ﬁ Z E 2z XT % Variational

A dropout
h; hy hy_y ey by
RNN RNN <o —fe>  RNN .
I 11 11
L Xi Ay Zr 1 Xr oy Ar 2z XA
Trainable
parameters
Z, = RNN(L) Z. = RNN(Z,_1, X, 1,A,_1,L)

Ay = FC(X¢,Z4;6)), forall j=1,...k
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Experiments on synthetic data

Build synthetic dataset using p—order autoregressive processes:

1P
Xej = 5 Z (0 jXe—ij+ wijAr—ij) + N,
i—1

1< :
Zy = - D BiZei+ D NijAcij) +et,

i=1 j=1

my = aZe +(1=7a)Xg, Ay | mg ~ Bernoulli(o(Ay)),

Yer1 =7vZepr+ (1= y) ( ZXf+1,J>
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Experiments on synthetic data

(a) Marginal Structural Models

(b) Recurrent Marginal Structural Networks
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® Root mean squared error (RMSE) obtained for one-step ahead
estimation of treatment effects.
® The parameters v = 74 = 7yy control the amount of hidden
confounding.
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-
Experiments on MIMIC Il

¢ Dataset with 6256 patients, with 25 covariates (lab tests and vital
signs) per person and trajectories up to 50 days.

e Estimate the effect of antibiotics, vassopressors and mechanical
ventilator on patient covariates.

® Hidden confounding is present in the dataset as patient comorbidities
and several lab tests were not included.

White blood cell count Blood pressure Oxygen saturation
Outcome model MSM R-MSN MSM R-MSN MSM R-MSN
Confounded \ 3.90 + 0.00 2.91 + 0.05 \ 12.04 +0.00 10.29 + 0.05 \ 2.92+0.00 1.74 +0.03
Dy =1 3.554+0.05 2.62+0.07|11.69 +0.14 9.354+0.11 |2.42 4+ 0.02 1.24 + 0.05
Dy =5 3.56 +0.04 2.41+0.04(11.63+0.10 9.45+0.10 |2.434+0.02 1.21 +0.07
Dy =10 3.58 +0.03 2.48 +0.06|11.66 +0.14 9.20 +0.12 |2.42 4+ 0.01 1.17 +0.06
Dy =20 3.54 +0.04 2.55+0.05[11.57 +0.12 9.63 +0.14 |2.40 +0.01 1.28 +0.08
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Discussion and limitations

® The Time Series Deconfounder enables the estimation of treatment
effects over time using weaker assumptions than existing methods.

¢ |dentifiability of the potential outcomes using the deconfounder
framework may represent an issue:
» non-identifiability will be indicated by the high variance of the
estimated outcomes.
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More from van der Schaar Lab...

® Read our publications:
https://www.vanderschaar-lab.com/publications/

e Use our software:
https://www.vanderschaar-lab.com/software/

Thank you for listening!
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