Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden Confounders

Ioana Bica, Ahmed M. Alaa, Mihaela van der Schaar International Conference on Machine Learning 2020

The Alan Turing Institute

Introduction

 Aim: Estimate the individualized effects of time-dependent treatments.

Introduction

 Aim: Estimate the individualized effects of time-dependent treatments.

 All existing methods for estimating treatment effects over time assume that there are no hidden confounders.

Hidden confounders

 Hidden confounders introduce bias when estimating treatment effects over time.

Hidden confounders

 Hidden confounders introduce bias when estimating treatment effects over time.

 Proposed solution: infer latent variables that capture the dependencies in the treatment assignments over time and can be used as substitutes for the hidden confounders.

Problem formalism

- Observational data for each patient:
 - ► Time-dependent patient covariates:

$$ar{\mathbf{X}}_t = (\mathbf{X}_1, \dots, \mathbf{X}_t)$$

Time-dependent treatments:

$$\bar{\mathbf{A}}_t = (\mathbf{A}_1, \dots, \mathbf{A}_t)$$
, where $\mathbf{A}_t = [A_{t1} \dots A_{tk}]$

▶ Observed patient outcome given history of covariates $\bar{\mathbf{X}}_t$ and treatments $\bar{\mathbf{A}}_t$: \mathbf{Y}_{t+1} .

Potential outcomes

- Use the potential outcomes framework (Rubin (1978), Neyman (1923), Robins & Hernan (2008)).
- Estimate individualized treatment effects, i.e. potential outcomes under treatment plan $\bar{\mathbf{a}}_{\geq t}$ conditional on patient history at timestep t:

$$\mathbb{E}[\textbf{Y}(\bar{\textbf{a}}_{\geq t}) \mid \bar{\textbf{A}}_{t-1}, \bar{\textbf{X}}_t]$$

Assume consistency and positivity.

Potential outcomes and hidden confounders

• Estimate individualized treatment effects, i.e. potential outcomes under treatment plan $\bar{\mathbf{a}}_{\geq t}$ conditional on patient history at timestep t:

$$\mathbb{E}[\mathbf{Y}(\mathbf{ar{a}}_{\geq t}) \mid \mathbf{ar{A}}_{t-1}, \mathbf{ar{X}}_t]$$

All existing methods assume that there are no hidden confounders:

$$\mathbf{Y}(\bar{\mathbf{a}}_{\geq t}) \perp \!\!\! \perp \mathbf{A}_t \mid \bar{\mathbf{X}}_t, \bar{\mathbf{A}}_{t-1} \text{ for all } \bar{\mathbf{a}}_{\geq t} \text{ and for all } t,$$

which is untestable in practice.

Hidden confounders - from static to temporal setting

- The Blessing of Multiple Causes (Wang & Blei, 2019):
 - ► Static causal inference setting.
 - ► Hidden confounders introduce dependencies in the treatment assignments.
 - ▶ Infer latent variables that capture these dependencies and render the treatments conditionally independent.
- In the temporal setting, the hidden confounders may change over time and may be affected by past treatments and covariates.

Time Series Deconfounder - Main ideas

 Hidden confounders may vary over time and may be affected by previous treatments and covariates.

Time Series Deconfounder - Main ideas

 Take advantage of the way multiple treatments are assigned over time to infer substitutes for the hidden confounders.

$$ar{\mathbf{Z}}_t = (\mathbf{Z}_1, \dots, \mathbf{Z}_t)$$

• Augment the observational dataset with $\bar{\mathbf{Z}}_t$ and use an outcome model to obtain unbiased estimates of the treatment effects.

Time Series Deconfounder - Factor model

Step 1: Fit **factor model over time** to infer substitutes for the hidden confounders.

• At time t construct the **latent variable Z**_t as a function of history $\bar{\mathbf{H}}_{t-1} = (\bar{\mathbf{A}}_{t-1}, \bar{\mathbf{X}}_{t-1}, \bar{\mathbf{Z}}_{t-1})$, such that:

$$p(A_{t1},\ldots,A_{tk}\mid \mathbf{Z}_t,\mathbf{X}_t)=\prod_{j=1}^k p(A_{tj}\mid \mathbf{Z}_t,\mathbf{X}_t).$$

Time Series Deconfounder - Factor model

Step 1: Fit **factor model over time** to infer substitutes for the hidden confounders.

Factor model of the assigned treatments has joint distribution:

$$\begin{split} \rho(\theta_{1:k}, \bar{\mathbf{x}}_{\mathcal{T}}, \bar{\mathbf{z}}_{\mathcal{T}}, \bar{\mathbf{a}}_{\mathcal{T}}) &= p(\theta_{1:k}) p(\bar{\mathbf{x}}_{\mathcal{T}}) \cdot \\ \prod_{t=1}^{\mathcal{T}} \left(p(\mathbf{z}_t \mid \bar{\mathbf{h}}_{t-1}) \prod_{j=1}^{k} p(a_{tj} \mid \mathbf{z}_t, \mathbf{x}_t, \theta_j) \right). \end{split}$$

Time Series Deconfounder - Factor model

Assumption (Sequential single strong ignorability)

$$\mathbf{Y}(\bar{\mathbf{a}}_{\geq t}) \perp \!\!\! \perp A_{tj} \mid \mathbf{X}_t, \bar{\mathbf{H}}_{t-1},$$

 $\forall \bar{\mathbf{a}}_{>t} \text{ and } \forall t \in \{0, \dots, T\} \text{ and } \forall j \in \{1, \dots, k\}.$

Time Series Deconfounder - Sequential strong ignorability

Theorem

If the distribution of the assigned causes $p(\bar{\mathbf{a}}_T)$ can be written as the factor model $p(\theta_{1:k}, \bar{\mathbf{x}}_T, \bar{\mathbf{z}}_T, \bar{\mathbf{a}}_T)$, we obtain sequential ignorable treatment assignment:

$$\mathbf{Y}(\bar{\mathbf{a}}_{\geq t}) \perp \!\!\! \perp (A_{t1}, \ldots, A_{tk}) \mid \bar{\mathbf{A}}_{t-1}, \bar{\mathbf{X}}_t, \bar{\mathbf{Z}}_t,$$

for all $\bar{\mathbf{a}}_{\geq t}$ and for all $t \in \{0, \dots, T\}$.

Evaluate factor model

- Use predictive checks (Rubin, 1984) to asses how well the factor model captures the distribution of treatments at each timestep.
- The inferred substitutes for the hidden confounders Z_t also need to satisfy positivity, i.e.

$$P(\mathbf{A}_t = \mathbf{a}_t \mid \bar{\mathbf{A}}_{t-1} = \bar{\mathbf{a}}_{t-1}, \bar{\mathbf{Z}}_t = \bar{\mathbf{z}}_t, \bar{\mathbf{X}}_t = \bar{\mathbf{x}}_t) > 0.$$

Time Series Deconfounder - Outcome model

Step 2: Sample $\hat{\mathbf{Z}}_t = [\hat{\mathbf{Z}}_1 \dots \hat{\mathbf{Z}}_t]$ from the factor model and fit an outcome model to estimate:

$$\mathbb{E}[\mathbf{Y} \mid \bar{\mathbf{a}}_{\geq t}, \bar{\mathbf{A}}_{t-1}, \bar{\mathbf{X}}_{t}, \hat{\bar{\mathbf{Z}}}_{t}] = \mathbb{E}[\mathbf{Y}(\bar{\mathbf{a}}_{\geq t}) \mid \bar{\mathbf{A}}_{t-1}, \bar{\mathbf{X}}_{t}, \hat{\bar{\mathbf{Z}}}_{t}].$$

Example outcome models: *Marginal Structural Models* (Robins et al. 2000), *Recurrent Marginal Structural Networks* (Lim et al., 2018).

Proposed factor model architecture

 Proposed architecture for the factor model: recurrent neural network (RNN) with multitask output and variational dropout.

Experiments on synthetic data

Build synthetic dataset using p-order autoregressive processes:

$$X_{t,j} = \frac{1}{\rho} \sum_{i=1}^{\rho} (\alpha_{i,j} X_{t-i,j} + \omega_{i,j} A_{t-i,j}) + \eta_t,$$

$$Z_t = \frac{1}{\rho} \sum_{i=1}^{\rho} (\beta_i Z_{t-i} + \sum_{j=1}^{k} \lambda_{i,j} A_{t-i,j}) + \epsilon_t,$$

$$\pi_{tj} = \gamma_A \hat{Z}_t + (1 - \gamma_A) \hat{X}_{tj}, \qquad A_{tj} \mid \pi_{tj} \sim \mathsf{Bernoulli}(\sigma(\lambda \pi_{tj})),$$

$$\mathbf{Y}_{t+1} = \gamma_Y Z_{t+1} + (1 - \gamma_Y) \Big(\frac{1}{k} \sum_{i=1}^k X_{t+1,j} \Big).$$

Experiments on synthetic data

- Root mean squared error (RMSE) obtained for one-step ahead estimation of treatment effects.
- The parameters $\gamma = \gamma_A = \gamma_Y$ control the amount of hidden confounding.

Experiments on MIMIC III

- Dataset with 6256 patients, with 25 covariates (lab tests and vital signs) per person and trajectories up to 50 days.
- Estimate the effect of antibiotics, vassopressors and mechanical ventilator on patient covariates.
- Hidden confounding is present in the dataset as patient comorbidities and several lab tests were not included.

	White blood cell count		Blood pressure		Oxygen saturation	
Outcome model	MSM	R-MSN	MSM	R-MSN	MSM	R-MSN
Confounded	3.90 ± 0.00	2.91 ± 0.05	12.04 ± 0.00	10.29 ± 0.05	2.92 ± 0.00	1.74 ± 0.03
$D_Z = 1$	3.55 ± 0.05	2.62 ± 0.07	11.69 ± 0.14	9.35 ± 0.11	2.42 ± 0.02	1.24 ± 0.05
$D_{Z} = 5$	3.56 ± 0.04	2.41 ± 0.04	11.63 ± 0.10	$\boldsymbol{9.45 \pm 0.10}$	2.43 ± 0.02	1.21 ± 0.07
$D_{Z} = 10$	3.58 ± 0.03	2.48 ± 0.06	11.66 ± 0.14	$\boldsymbol{9.20 \pm 0.12}$	2.42 ± 0.01	1.17 ± 0.06
$D_Z = 20$	3.54 ± 0.04	2.55 ± 0.05	11.57 ± 0.12	9.63 ± 0.14	2.40 ± 0.01	1.28 ± 0.08

Discussion and limitations

- The Time Series Deconfounder enables the estimation of treatment effects over time using weaker assumptions than existing methods.
- Identifiability of the potential outcomes using the deconfounder framework may represent an issue:
 - non-identifiability will be indicated by the high variance of the estimated outcomes.

More from van der Schaar Lab...

Read our publications:
 https://www.vanderschaar-lab.com/publications/

Use our software: https://www.vanderschaar-lab.com/software/

Thank you for listening!