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Self-concordant minimization

We consider the optimization problem

min f(x) (P)

xeX

where
@ X C R"is convex compact

@ f:R" — (—o0,c0] is convex and thrice continuously
differentiable on the open set domf = {x : f(x) < oo}.
Given the large-scale nature of optimization problems in

machine learning, first-order methods are the method of
choice.
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Frank-Wolfe methods

Because of great scalability and sparsity properties,
Frank-Wolfe (FW) methods (Frank & Wolfe, 1956)
received lot of attention in ML.

@ Convergence guarantees require Lipschitz continuous
gradients, or finite curvature constants on f (Jaggi,
2013)

e Even fOI’ Well‘Cond|t|0ned (Lipschitz smooth and strongly convex) pI’Ob|emS
only sublinear convergence rates guaranteed in
general.
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Many canonical ML problems do not have Lipschitz
gradients

o Portfolio Optimization

T n
=Y In({r,x)),xeX={xeR]: ) x;=1}.
t=1 i=
e Covariance Estimation:
f(x) = —In(det(X)) + tr(£X),
x € X ={x e Ry, :|[Vec(X)|l; <R}

@ Poisson Inverse Problem
m

f(X):Z Wi, X Zylln Wi, X)),

i=1
xeX={xeR" ||x||1 § R}.
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Main Results

All these function are Self-concordant (SC), and have no
Lipschitz continuous gradient. Standard analysis does not

apply.

Result 1: We give a unified analysis of provable
convergent FW algorithms minimizing SC functions.

Result 2: Based on the theory of Local Linear
Optimization Oracles (LLOO) (Lan 2013, Garber &
Hazan, 2016), we construct linearly convergent
variants for our base algorithms.
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Vanilla FW

The analysis of FW involves
(a) a search direction

s(x) = argmin (Vf(x), s) .

seX

(b) as merit function the gap function

gap(x) = (VI(x), x — s(x))

Standard Frank-Wolfe method:
If gap(x¥) > e then

@ Obtain s = s(x¥);
@ Set x* 1 = xk 1 a,(sK — x¥) for some ax € [0, 1].
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SC optimization

Definition of SC functions

o f:R" — (—oc0, +00] a C3(dom f) convex function
e domfis open setin R".
o fis SCif

9" (8)] < Mg ()%

for ¢(t) = f(x +tv),x € domf,v € R" and
X+ tv € dom .
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SC optimization

Self-concordant functions

e Self-concordant (SC) function have been developed
within the field of interior-point method (Nesterov &
Nemirovski, 1994)

e Starting with Bach (2010), they gained a lot of interest

in Machine learning and Statistics (see e.g. Tran-Dinh,

Kyrillidis & Cevher; Sun & Tran-Dinh 2018; Ostrovskii &
Bach 2018)

@ MATLAB toolbox SCOPT
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Adaptive Frank Wolfe methods

Basic estimates of SC functions

e For all x, x € dom f we have the following bounds on
function values

f(x) > f(x)+ (VF(x),x—x) + %w (d(x, X))
f(X) < f(x)+(VF(x),Xx—x)+ %w* (d(x, X))

where
w(t):=t—In(1+1), and wy(t) := —t—In(1 — 1)

dx,y) = Iy —xle = 3 (PRl —xy —x])
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Algorithm 1

Let x;” = x + t(s(x) — x),t >0
Obtain the non-Euclidean descent inequality:
4
f(x;") < f(x)+(VF(x),x; —x) + Ww*(te(x))
< F(x) = x(1)

for t € (0,1/e(x)),e(x) = 4 |s(x) — x| 2.
Optimizing the per-iteration decrease w.r.t t leads to

a(x) =min{1,£(x)},t(x) = gap(x)

e(x)(gap(x) + gze(x))’
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Iteration Complexity

Define the approximation error : hy = f(x¥) — f*.
Let
S(x%) = {x € X|f(x) < f(x*)}, and

Los= max Amax(V2F(x)).
i ol max(V<f(x))

Theorem

|

For given e > 0, define N.(x°) = min{k > 0|hx < e}.
Then,

In (h%b> Ly diam ()2

0y <
Nel) < =+ @)
1 2(1-In(2)) _ _1-In(2)
where a = min {2 m} andb = - Gamme-
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Algorithm 2: Backtracking Variant of FW
Let

Q(x*,t,p) = F(x*) — t- gap(x H H -
On S(x%) := {x € X|f(x) < f(x%)}, we have
f(xK +t(sk — xK)) < Q(x¥, t, Lyy).
Problem: Ly is hard to estimate and numerically large.

Solution: A backtracking procedure allows us to find a

local estimate for the unknown Ly (see also Pedregosa
et al. 2020)
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Backtracking procedure to find the local Lipschitz constant

Algorithm 1 Function step(f, v, x, g, L)

Choose 7y > 1,94 <1
Choose yt € [y4£, £]

a=min{ —9
{;nuvug 1

if f(x +av) > Q(x,a, u) then

B Tup .

a < min{ —=—,1

{uuvug }

end if
Return o,

We have for all t € [0, 1]

e

FOXKHTY < F(xK) — t- gap(x¥) + 5 ||S X

where L is obtained from Algorithm 1.
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Main Result

Theorem

Let (x¥)x be the backtracking variant of FW using
Algorithm 1 as subroutine. Then

2gap(x9) k diam(X)?
“(k+1)(k+2) (k+1)(k+2)

where Ly £ LYK 1 L.
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Linear Convergence

Linearly Convergent FW variant

Definition (Garber & Hazan (2016))

A procedure A(x,r,c), where x € X,r >0,c € R",isa
LLOO with parameter p > 1 for the polytope X if A(x, r, C)
returns a point s € X such that for all x € B,(x) N X

(c,x) > (c,s) and ||x —sl[, < pr.

@ Such oracles exist for any compact polyhedral domain.

e Particular simple implementation for Simplex-like
domains.
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Linear Convergence

Call

= min_ Amin(V2£(x)).
o= min, min(VF(x))

Theorem (Simplified version)

Given a polytope X with LLOO A(x,r,c) for each
xeX,,re(0,0),ceR" Let

in{—2_ 1) 1
6Ly’ " 4 /Ly MdamO)’

Then,

he < gap(x®) exp(—ka/2).

4

In the paper we present a version of this Theorem without
knowledge of Ly .
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Figure: Portfolio Optimization (Right), Poisson Inverse Problem (Left)
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Conclusion

@ We derived various novel FW schemes with provable
convergence guarantees for self-concordant
minimization.

e Future directions of research include the following
e Generalized self-concordant minimization (Sun &

Tran-Dinh 2018)
e Stochastic oracles

e Inertial effects in algorithm design (Conditional gradient
sliding (Lan & Zhou, 2016))
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