
Overview Development of the algorithms The Algorithms Conclusion

Self-concordant analysis of Frank-Wolfe
algorithms

Pavel Dvurechensky1 Shimrit Shtern2 Mathias
Staudigl3 Petr Ostroukhov4 Kamil Safin 4

1WIAS 2The Technion 3Maastricht University 4Moscow Institute of Physics and
Technology

ICML2020, July 12-July 18

Overview Development of the algorithms The Algorithms Conclusion

Self-concordant minimization

We consider the optimization problem

min
x∈X

f (x) (P)

where
X ⊂ Rn is convex compact
f : Rn → (−∞, ∞] is convex and thrice continuously
differentiable on the open set dom f = {x : f (x) < ∞}.

Given the large-scale nature of optimization problems in
machine learning, first-order methods are the method of
choice.

Overview Development of the algorithms The Algorithms Conclusion

Frank-Wolfe methods

Because of great scalability and sparsity properties,
Frank-Wolfe (FW) methods (Frank & Wolfe, 1956)
received lot of attention in ML.

1 Convergence guarantees require Lipschitz continuous
gradients, or finite curvature constants on f (Jaggi,
2013)

2 Even for well-conditioned (Lipschitz smooth and strongly convex) problems
only sublinear convergence rates guaranteed in
general.

x⇤

x(t)

x(0)

x(t+1)

st x⇤

x(t)

x(0)

vt

stx(t+1) x⇤

x(t)

x(0)

vt

st

/
/

x(t+1)

/
/

Figure 1: (left) The FW algorithm zig-zags when the solution x⇤ lies on the boundary. (middle) Adding the
possibility of an away step attenuates this problem. (right) As an alternative, a pairwise FW step.

between the vertices defining the face containing the solution x⇤ (see left of Figure 1). In fact, the
1/t rate is tight for a large class of functions: Canon and Cullum [6], Wolfe [34] showed (roughly)
that f(x(t))�f(x⇤) � ⌦

�
1/t1+�

�
for any � > 0 when x⇤ lies on a face of M with some additional

regularity assumptions. Note that this lower bound is different than the ⌦
�
1/t

�
one presented in [15,

Lemma 3] which holds for all one-atom-per-step algorithms but assumes high dimensionality d � t.

1 Improved Variants of the Frank-Wolfe Algorithm

Algorithm 1 Away-steps Frank-Wolfe algorithm: AFW(x(0), A, ✏)

1: Let x(0) 2 A, and S(0) := {x(0)} (so that ↵(0)
v = 1 for v = x(0) and 0 otherwise)

2: for t = 0 . . . T do
3: Let st := LMOA

�
rf(x(t))

�
and dFW

t := st � x(t) (the FW direction)
4: Let vt 2 arg max

v2S(t)

⌦
rf(x(t)), v

↵
and dA

t := x(t) � vt (the away direction)

5: if gFW
t :=

⌦
�rf(x(t)), dFW

t

↵
 ✏ then return x(t) (FW gap is small enough, so return)

6: if
⌦
�rf(x(t)), dFW

t

↵
�

⌦
�rf(x(t)), dA

t

↵
then

7: dt := dFW
t , and �max := 1 (choose the FW direction)

8: else
9: dt := dA

t , and �max := ↵vt/(1� ↵vt) (choose away direction; maximum feasible step-size)
10: end if
11: Line-search: �t 2 arg min

�2[0,�max]

f
�
x(t) + �dt

�

12: Update x(t+1) := x(t) + �tdt (and accordingly for the weights ↵(t+1), see text)

13: Update S(t+1) := {v 2 A s.t. ↵
(t+1)
v > 0}

14: end for

Algorithm 2 Pairwise Frank-Wolfe algorithm: PFW(x(0), A, ✏)

1: . . . as in Algorithm 1, except replacing lines 6 to 10 by: dt = dPFW
t := st�vt, and �max := ↵vt

.

Away-Steps Frank-Wolfe. To address the zig-zagging problem of FW, Wolfe [34] proposed to
add the possibility to move away from an active atom in S(t) (see middle of Figure 1); this simple
modification is sufficient to make the algorithm linearly convergent for strongly convex functions.
We describe the away-steps variant of Frank-Wolfe in Algorithm 1.3 The away direction dA

t is
defined in line 4 by finding the atom vt in S(t) that maximizes the potential of descent given by
gA

t :=
⌦
�rf(x(t)), x(t) � vt

↵
. Note that this search is over the (typically small) active set S(t),

and is fundamentally easier than the linear oracle LMOA. The maximum step-size �max as defined
on line 9 ensures that the new iterate x(t) + �dA

t stays in M. In fact, this guarantees that the convex
representation is maintained, and we stay inside conv(S(t)) ✓ M. When M is a simplex, then the
barycentric coordinates are unique and x(t) +�maxd

A
t truly lies on the boundary of M. On the other

hand, if |A| > dim(M) + 1 (e.g. for the cube), then it could hypothetically be possible to have a
step-size bigger than �max which is still feasible. Computing the true maximum feasible step-size
would require the ability to know when we cross the boundary of M along a specific line, which
is not possible for general M. Using the conservative maximum step-size of line 9 ensures that we

3The original algorithm presented in [34] was not convergent; this was corrected by Guélat and Marcotte
[12], assuming a tractable representation of M with linear inequalities and called it the modified Frank-Wolfe
(MFW) algorithm. Our description in Algorithm 1 extends it to the more general setup of (1).

3

Overview Development of the algorithms The Algorithms Conclusion

Many canonical ML problems do not have Lipschitz
gradients

Portfolio Optimization

f (x) = −
T

∑
t=1

ln(〈rt , x〉), x ∈ X = {x ∈ Rn
+ :

n

∑
i=1

xi = 1}.

Covariance Estimation:

f (x) = − ln(det(X)) + tr(Σ̂X),

x ∈ X = {x ∈ Rn×n
sym,+ : ‖Vec(X)‖1 ≤ R}.

Poisson Inverse Problem

f (x) =
m

∑
i=1
〈wi , x〉 −

m

∑
i=1

yi ln(〈wi , x〉),

x ∈ X = {x ∈ Rn| ‖x‖1 ≤ R}.

Overview Development of the algorithms The Algorithms Conclusion

Main Results

All these function are Self-concordant (SC), and have no
Lipschitz continuous gradient. Standard analysis does not
apply.

Result 1: We give a unified analysis of provable
convergent FW algorithms minimizing SC functions.

Result 2: Based on the theory of Local Linear
Optimization Oracles (LLOO) (Lan 2013, Garber &
Hazan, 2016), we construct linearly convergent
variants for our base algorithms.

Overview Development of the algorithms The Algorithms Conclusion

Vanilla FW

The analysis of FW involves
(a) a search direction

s(x) = argmin
s∈X

〈∇f (x), s〉 .

(b) as merit function the gap function

gap(x) = 〈∇f (x), x − s(x)〉

Standard Frank-Wolfe method:
If gap(xk) > ε then
1 Obtain sk = s(xk);
2 Set xk+1 = xk + αk (sk − xk) for some αk ∈ [0, 1].

Overview Development of the algorithms The Algorithms Conclusion

SC optimization

Definition of SC functions

f : Rn → (−∞,+∞] a C3(dom f) convex function
dom f is open set in Rn.
f is SC if ∣∣ϕ′′′(t)

∣∣ ≤ M ϕ′′(t)3/2

for ϕ(t) = f (x + tv), x ∈ dom f , v ∈ Rn and
x + tv ∈ dom f .

Overview Development of the algorithms The Algorithms Conclusion

SC optimization

Self-concordant functions

Self-concordant (SC) function have been developed
within the field of interior-point method (Nesterov &
Nemirovski, 1994)
Starting with Bach (2010), they gained a lot of interest
in Machine learning and Statistics (see e.g. Tran-Dinh,
Kyrillidis & Cevher; Sun & Tran-Dinh 2018; Ostrovskii &
Bach 2018)
MATLAB toolbox SCOPT

Overview Development of the algorithms The Algorithms Conclusion

Adaptive Frank Wolfe methods

Basic estimates of SC functions

For all x , x̃ ∈ dom f we have the following bounds on
function values

f (x̃) ≥ f (x) + 〈∇f (x), x̃ − x〉+ 4
M2 ω (d(x , x̃))

f (x̃) ≤ f (x) + 〈∇f (x), x̃ − x〉+ 4
M2 ω∗ (d(x , x̃))

where

ω(t) := t − ln(1 + t), and ω∗(t) := −t − ln(1− t)

d(x , y) :=
M
2
‖y − x‖x =

M
2

(
D2f (x)[y − x , y − x]

)1/2
.

Overview Development of the algorithms The Algorithms Conclusion

Algorithm 1

Let x+
t = x + t(s(x)− x), t > 0

Obtain the non-Euclidean descent inequality:

f (x+
t) ≤ f (x) +

〈
∇f (x), x+

t − x
〉
+

4
M2 ω∗(te(x))

≤ f (x)− ηx (t)

for t ∈ (0, 1/e(x)),e(x) = M
2 ‖s(x)− x‖2

x .
Optimizing the per-iteration decrease w.r.t t leads to

α(x) = min{1,t(x)},t(x) = gap(x)
e(x)(gap(x) + 4

M2e(x))
.

Overview Development of the algorithms The Algorithms Conclusion

Iteration Complexity

Define the approximation error : hk = f (xk)− f ∗.
Let

S(x0) = {x ∈ X|f (x) ≤ f (x0)}, and

L∇f = max
x∈S(x0)

λmax(∇2f (x)).

Theorem

For given ε > 0, define Nε(x0) = min{k ≥ 0|hk ≤ ε}.
Then,

Nε(x0) ≤
ln
(

h0b
a

)

a
+

L∇f diam(X)2

(1 + ln(2))ε
.

where a = min
{

1
2 , 2(1−ln(2))

M
√

L∇f diam(X)

}
and b = 1−ln(2)

L∇f diam(X)2 .

Overview Development of the algorithms The Algorithms Conclusion

Algorithm 2: Backtracking Variant of FW

Let

Q(xk , t , µ) := f (xk)− t · gap(xk) +
t2µ

2

∥∥∥s(xk)− xk
∥∥∥

2

2
.

On S(x0) := {x ∈ X|f (x) ≤ f (x0)}, we have

f (xk + t(sk − xk)) ≤ Q(xk , t , L∇f).

Problem: L∇f is hard to estimate and numerically large.

Solution: A backtracking procedure allows us to find a

local estimate for the unknown L∇f (see also Pedregosa
et al. 2020)

Overview Development of the algorithms The Algorithms Conclusion

Backtracking procedure to find the local Lipschitz constant

Algorithm 1 Function step(f , v , x , g,L)
Choose γu > 1, γd < 1
Choose µ ∈ [γdL,L]

α = min{ g
µ‖v‖22

, 1}

if f (x + αv) > Q(x , α, µ) then
µ← γu µ

α← min{ g
µ‖v‖22

, 1}

end if
Return α, µ

We have for all t ∈ [0, 1]

f (xk+1) ≤ f (xk)− t · gap(xk) +
t2Lk

2

∥∥∥sk − xk
∥∥∥

2

where Lk is obtained from Algorithm 1.

Overview Development of the algorithms The Algorithms Conclusion

Main Result

Theorem

Let (xk)k be the backtracking variant of FW using
Algorithm 1 as subroutine. Then

hk ≤
2gap(x0)

(k + 1)(k + 2)
+

k diam(X)2

(k + 1)(k + 2)
L̄k

where L̄k , 1
k ∑k−1

i=0 Li .

Overview Development of the algorithms The Algorithms Conclusion

Linear Convergence

Linearly Convergent FW variant

Definition (Garber & Hazan (2016))

A procedure A(x , r , c), where x ∈ X, r > 0, c ∈ Rn, is a
LLOO with parameter ρ ≥ 1 for the polytope X if A(x , r , c)
returns a point s ∈ X such that for all x ∈ Br (x) ∩X

〈c, x〉 ≥ 〈c, s〉 and ‖x − s‖2 ≤ ρr .

Such oracles exist for any compact polyhedral domain.
Particular simple implementation for Simplex-like
domains.

Overview Development of the algorithms The Algorithms Conclusion

Linear Convergence

Call
σf = min

x∈S(x0)
λmin(∇2f (x)).

Theorem (Simplified version)

Given a polytope X with LLOO A(x , r , c) for each
x ∈ X, , r ∈ (0, ∞), c ∈ Rn. Let

ᾱ , min{ σf

6L∇f ρ2 , 1} 1

1 +
√

L∇f
M diam(X)

2

.

Then,
hk ≤ gap(x0) exp(−k ᾱ/2).

In the paper we present a version of this Theorem without
knowledge of L∇f .

Overview Development of the algorithms The Algorithms Conclusion

Linear Convergence

Numerical Performance

Portfolio
Optimization

f (x) =
T
∑
t=1

ln(〈rt , x〉)

X = {x ∈ Rn
+ :

n
∑
i=1

xi = 1}.

Poisson Inverse
problem

f (x) =
m
∑
i=1
〈wi , x〉 −

m
∑
i=1

yi ln(〈wi , x〉),

x ∈ X = {x ∈ Rn | ‖x‖1 ≤ R}.

Figure: Portfolio Optimization (Right), Poisson Inverse Problem (Left)

Overview Development of the algorithms The Algorithms Conclusion

Conclusion

We derived various novel FW schemes with provable
convergence guarantees for self-concordant
minimization.
Future directions of research include the following

Generalized self-concordant minimization (Sun &
Tran-Dinh 2018)
Stochastic oracles
Inertial effects in algorithm design (Conditional gradient
sliding (Lan & Zhou, 2016))

	Overview
	Development of the algorithms
	Vanilla FW
	SC optimization
	Adaptive Frank Wolfe methods

	The Algorithms
	Linear Convergence

	Conclusion

