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Highlights in this Work

@ A systematical revisit to SPs with an Implicit Latent Variable Model

» conceptualization of latent SP models
» comprehension about SPs with LVMs

@ A novel exchangeable SP within a Hierarchical Bayesian Framework

» formalization of a hierarchical SP
» plausible approximate inference method

o Competitive performance on extensive Uncertainty-aware Applications

> high dimensional regressions on simulators/real-world dataset
» classification and o.0.d. detection on image dataset
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Outline of this Talk

© Motivation for SPs
© Study of SPs with LVMs
© NP with Hierarchical Latent Variables

@ Experiments and Applications
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Motivation for SPs



Why Do We Need Stochastic Processes?

The stochastic process (SP) is a math tool to describe the distribution over functions. (Fig.
refers to [1])
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Why Do We Need Stochastic Processes?

The stochastic process (SP) is a math tool to describe the distribution over functions. (Fig.

refers to [1])
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@ Flexible to handle correlations among samples : significant for non-i.i.d. dataset ;

e Quantify uncertainty in risk-sensitive applications : e.g. forecast p(s;y1|st, ar) in
autonomous driving [2] ;

@ Model distributions instead of point estimates : working as a generative model for more

realizations [3].
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Two Consistencies in Exchangeable SPs

Some required properties for exchangeable stochastic process p [4] :
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Two Consistencies in Exchangeable SPs

Some required properties for exchangeable stochastic process p [4] :

@ Marginalization Consistency. For any finite collection of random variables
{y1,¥2,...,yn+m}, the probability after marginalization over subset is unchanged.

/le:N+M(Y1:N+M)dyN+1:N+M = le:N(.y].:N) (1-1)

o Exchangeability Consistency. Any random permutation over set of variables does not
influence joint probability.

Py (Y1:n) = pXW(I:N)(yﬂ’(l:N)) (1.2)
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Two Consistencies in Exchangeable SPs

Some required properties for exchangeable stochastic process p [4] :

@ Marginalization Consistency. For any finite collection of random variables
{y1,¥2,...,yn+m}, the probability after marginalization over subset is unchanged.

/le:N+M(Y1:N+M)dyN+1:N+M = le:N(.y].:N) (1-1)

o Exchangeability Consistency. Any random permutation over set of variables does not
influence joint probability.

Py (Y1:n) = pXW(I:N)(yﬂ’(l:N)) (1.2)

With these two conditions, an exchangeable SP can be induced. (Refer to Kolmogorov
Extension Theorem)
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SPs in Progress and Primary Concerns

Crucial properties for SPs : Analysis on GPs/NPs :

e Gaussian Processes (GPs)
@ Scalability in large-scale dataset:

o Flexibility in distributions: e Neural Processes (NPs)

@ Extension to high dimensions:
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SPs in Progress and Primary Concerns

Crucial properties for SPs : Analysis on GPs/NPs :
o e Gaussian Processes (GPs)
@ Scalability in large-scale dataset: — less scalable with computational
— Optimization/Computational complexity O(N3)
bottleneck
o Flexibility in distributions: e Neural Processes (NPs)
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@ Extension to high dimensions:
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SPs in Progress and Primary Concerns

Crucial properties for SPs : Analysis on GPs/NPs :

o e Gaussian Processes (GPs)
@ Scalability in large-scale dataset: — less scalable with computational
— Optimization/Computational complexity O(N3)

bottleneck — less flexible with Gaussian distributions

o Flexibility in distributions: e Neural Processes (NPs)

— Non-Gaussian or Multi-modal property — more scalable with computational

complexity O(N)
@ Extension to high dimensions:
— Correlations among or across
Input/Output
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SPs in Progress and Primary Concerns

Crucial properties for SPs : Analysis on GPs/NPs :
o e Gaussian Processes (GPs)
@ Scalability in large-scale dataset: — less scalable with computational
— Optimization/Computational complexity O(N3)
bottleneck — less flexible with Gaussian distributions
o Flexibility in distributions: e Neural Processes (NPs)
— Non-Gaussian or Multi-modal property —» more scalable with computational
complexity O(N)
@ Extension to high dimensions: — more flexible with no explicit
— Correlations among or across distributions
Input/Output
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Study of SPs with LVMs



Deep Latent Variable Model as SPs

Here we present an implicit Latent Variable Model for SPs :

@ Generation paradigm with (potentially correlated) latent variables :

@ Predictive distribution in SPs : Let the context and target input be
C={(xi,y)|i=1,2,...,N} and x7, the computation is

(2.3)

mostly intractable.
25 /69



Deep Latent Variable Model as SPs

Here we present an implicit Latent Variable Model for SPs :

@ Generation paradigm with (potentially correlated) latent variables :

z = o(x) + e(x) (21)
index depend. l.v.  deter. term  stoch. term

@ Predictive distribution in SPs : Let the context and target input be
C={(xi,y)|i=1,2,...,N} and x7, the computation is

(2.3)

mostly intractable.
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Deep Latent Variable Model as SPs
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zZ; = (Z)(X,‘) + E(X,') (2.1)
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zZ; = (Z)(X,‘) + E(X,') (2.1)
index depend. l.v.  deter. term  stoch. term
yvi =p(xi,z)+ G (2.2)
< = =~
obs. trans. obs. noise

@ Predictive distribution in SPs : Let the context and target input be
C={(xi,y)|i=1,2,...,N} and x7, the computation is
p(zc, z7)

po(zT|xc, yc,xT) = Tplze, zr)dzc’ (2.3)
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Deep Latent Variable Model as SPs

Here we present an implicit Latent Variable Model for SPs :

@ Generation paradigm with (potentially correlated) latent variables :

zZ; = (Z)(X,‘) + E(X,') (2.1)
index depend. l.v.  deter. term  stoch. term
yvi =p(xi,z)+ G (2.2)
< = =~
obs. trans. obs. noise

@ Predictive distribution in SPs : Let the context and target input be
C={(xi,y)|i=1,2,...,N} and x7, the computation is
p(zc, z7)

po(zT|xc,yc,xT) = W, y1 ~ plyT|xT, 27,() (2.3)

mostly intractable.
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Gaussian Processes & Neural Processes

NP family approximates SPs in the form of LVMs :

@ GP as an exchangeable SP with latent variables :

@ NP as an exchangeable SP with a global latent variable :
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Gaussian Processes & Neural Processes

NP family approximates SPs in the form of LVMs :

@ GP as an exchangeable SP with latent variables :

pu) = [ Nyiz 7 D) Nz m) KL, ) (24)

l.v.

@ NP as an exchangeable SP with a global latent variable :
N+M
P (YLN4+M) =/ T pWilxi z6) plze) dze (2.5)
N — N~

=1 trans. global Lv.

Some other models, such as Hierarchical GPs [5] and Deep GPs [6], [7] can also be expressed
with LVMs.
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Inference for Neural Processes

A general ELBO with a context prior in NP models [1] :

Statistics of the context invariant to the order in set instances, such as pooling of
element-wise embeddings :
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Inference for Neural Processes

A general ELBO with a context prior in NP models [1] :
In [p(y7lxc,yc,x7)] > Eq, In [ po(yr|xT, 26) |
N————
data likelihood
—Drk(9s(z6lxc, ye, x7,y7) Il plzelxc, yc))

global posterior global prior

(2.6)

Statistics of the context invariant to the order in set instances, such as pooling of
element-wise embeddings :
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Inference for Neural Processes

A general ELBO with a context prior in NP models [1] :

In [p(y7lxc,yc,x7)] > Eq, In [ po(yr|xT, 26) |
—_——
data likelihood

(2.6)
—Drk(9s(z6lxc, ye, x7,y7) Il plzelxc, yc))
global ;);sterior global prior
Statistics of the context invariant to the order in set instances, such as pooling of
element-wise embeddings :
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Inference for Neural Processes

A general ELBO with a context prior in NP models [1] :

In [p(y7lxc,yc,x7)] > Eq, In [ po(yr|xT, 26) |
—_——
data likelihood

2.6
—Dke(g4(z6|xc, ye, xT,y71) |l P(ZG|XC7}/CZ) (26)
global ;);sterior global prior
Statistics of the context invariant to the order in set instances, such as pooling of
element-wise embeddings :
N
ri = h@(thi)v r:@ria p@(ZC|XC7_yC):N(ZCHfM(r)?fo’(r)]) (27)

i=1

EE-E
@ @J = > MLP y*
- (k)

T T
E‘ 8 sampling 37/69




NPs with Hierarchical
Latent Variables



Extending NPs from A Hierarchical Bayes Perspective

Our work starts with motivations:

o Hierarchical Bayesian structures — more expressiveness.
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Extending NPs from A Hierarchical Bayes Perspective

Our work starts with motivations:
o Hierarchical Bayesian structures — more expressiveness.
@ Involving local l.v. — reveal local dependencies across input/output in high-dim cases.
As a result, a hierarchical LVM is induced as Doubly Stochastic Variational Neural Process
(DSVNP):

N+M

pX1N+M yi: N+M // H 1% yI‘ZGaZhXI) (3 1)
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Extending NPs from A Hierarchical Bayes Perspective

Our work starts with motivations:
o Hierarchical Bayesian structures — more expressiveness.
@ Involving local l.v. — reveal local dependencies across input/output in high-dim cases.
As a result, a hierarchical LVM is induced as Doubly Stochastic Variational Neural Process
(DSVNP):

N+M

pX1N+M yi: N+M // H 1% yI‘ZGaZHXI) (3 1)

p(zi|xi, ZG)P(ZG)d21:N+I\/IdZG

DSVNP satisfies Marginalization and Exchangeability Consistencies, so it is a new
exchangeable SP.
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Approximate Inference for DSVNP

Exact inference for this hierarchical LVM is mostly intractable, hence approximate inference is
used here.

@ Evidence Lower Bound for DSVNP :

@ Generative (Black Lines) and Recognition Models (Blue/Pink Lines) in Graphs : Specify
generative process with black line
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Approximate Inference for DSVNP

Exact inference for this hierarchical LVM is mostly intractable, hence approximate inference is
used here.

o Evidence Lower Bound for DSVNP :
In [p(ys|xc, yc, x)] > Eqs,  Eay, , In[p(y«|zG, z:, X))

q¢11[ KL[qG72 1(2*‘ZG?X* y*) || P> Z*‘ZG’X* ] (32)
_DKL[%l ]_(ZG‘XC7yC7XT7yT) H p¢12 ZG’XC,yC ]

@ Generative (Black Lines) and Recognition Models (Blue/Pink Lines) in Graphs : Specify
generative process with black line
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Approximate Inference for DSVNP

Exact inference for this hierarchical LVM is mostly intractable, hence approximate inference is
used here.

@ Evidence Lower Bound for DSVNP :
In [p(y*|XC7yC7X*)] > ECI¢1 1E%21 In[p(y*]zc,z*,x*)]
q¢11[ KL[qG72 1(2*‘ZG?X* y*) || P> Z*‘ZG’X* ] (32)

_DKL[%l ]_(ZG‘XC7yC7XT7yT) H p¢12 ZG’XC,yC ]

@ Generative (Black Lines) and Recognition Models (Blue/Pink Lines) in Graphs : Specify
generative process with black line

Training

Process Testing

Process
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Training and Testing in Practice

Similar to that in NPs, DSVNP is trained in a SGVB way [8].
@ Scalable training with random context points :

@ Testing/Forecasting with priors and Monte Carlo estimates :
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Training and Testing in Practice

Similar to that in NPs, DSVNP is trained in a SGVB way [8].

@ Scalable training with random context points :
Algorithm 1 Variational Inference for DSVNP in Training.

Input: Dataset D = {z¢, yc:; 27, yr }, Maximum context points N, 4., etc.
Output: Model parameters ¢, ¢ and 6.
for i = 1tom do
Draw some context number N¢ ~ U |1, Nypaz )
Draw mini-batch pair instances {(zc, yc, 27, yr)bs oy ~ D
Feedforward instances to recognition model gy, ;
Feedforward latent variables to generative model py;
Update parameters by Optimizing Eq. (12):
&1 ¢+ aVy, Lye b oy = [01,1,¢12]
o o+ aVy, Lare b d1 = (92,1, 02,2]
0« 0+ aVyeLyce
end for

o Testing/Forecasting with priors and Monte Carlo estimates :
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Training and Testing in Practice

Similar to that in NPs, DSVNP is trained in a SGVB way [8].

@ Scalable training with random context points :
Algorithm 1 Variational Inference for DSVNP in Training.

Input: Dataset D = {z¢, yc:; 27, yr }, Maximum context points N, 4., etc.
Output: Model parameters ¢, ¢ and 6.
for i = 1tom do
Draw some context number N¢ ~ U |1, Nypaz )
Draw mini-batch pair instances {(zc, yc, 27, yr)bs oy ~ D
Feedforward instances to recognition model gy, ;
Feedforward latent variables to generative model py;
Update parameters by Optimizing Eq. (12):
&1 ¢+ aVy, Lye b oy = [01,1,¢12]
o o+ aVy, Lare b d1 = (92,1, 02,2]
0« 0+ aVyeLyce
end for

o Testing/Forecasting with priors and Monte Carlo estimates :

k
(Y*|XC7}/C’X* ~ ZZP& .y*|X*7Z* (G))

klsl

(3.3)
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Training and Testing in Practice

Similar to that in NPs, DSVNP is trained in a SGVB way [8].

@ Scalable training with random context points :
Algorithm 1 Variational Inference for DSVNP in Training.

Input: Dataset D = {z¢, yc:; 27, yr }, Maximum context points N, 4., etc.
Output: Model parameters ¢, ¢ and 6.
for i = 1tom do
Draw some context number N¢ ~ U |1, Nypaz )
Draw mini-batch pair instances {(zc, yc, 27, yr)bs oy ~ D
Feedforward instances to recognition model gy, ;
Feedforward latent variables to generative model py;
Update parameters by Optimizing Eq. (12):
1 ¢ ¢1+aVy, Ly > ¢ = [f11,012]
o o+ aVy, Lare b d1 = (92,1, 02,2]
0« 0+ aVyeLyce
end for

o Testing/Forecasting with priors and Monte Carlo estimates :

ply«lxc. yc, %) = ZZpey*lx*,z* 28) (3:3)

k 1s=1
(k)

using latent variables sampled in prior networks as z;’ ~ pg, ,(zg|xc, yc) and
(s)

k
z, ~ p¢2’2(z*|zé),x*). 50/ 60



Experiments and Applications



Toy Experiments

Discoveries in 1-D Simulation Experiments in terms of fitting errors and uncertainty
quantification (UQ) :

@ Episdemic uncertainty in a single curve :
@ Interpolation in curves of a SP:

@ Extrapolation in curves of a SP:
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Toy Experiments

Discoveries in 1-D Simulation Experiments in terms of fitting errors and uncertainty
quantification (UQ) :

(a) CNP (b) NP (c) AttnNP (d) DSVNP
. i
e Episdemic uncertainty in a single curve : Wk J\/V ’\ﬂ/\/ ‘\/J%Wf N"/A'W
NP /AttnNP — over-confident in some

regions Va2l an2lV a2l '
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Toy Experiments

Discoveries in 1-D Simulation Experiments in terms of fitting errors and uncertainty

quantification (UQ) :

@ Episdemic uncertainty in a single curve :

NP /AttnNP — over-confident in some
regions

@ Interpolation in curves of a SP:
AttnNP > DSVNP = NP = CNP
(Fitting/UQ Performance)

@ Extrapolation in curves of a SP:

(a) CNP (b) NP (c) AttnNP (d) DSVNP

M B B
WY Y - Y
Va2l o al¥ an%

Table 2. Average Negative Log-likelihoods over all target points
on realizations from Synthetic Stochastic Process. (Figures in
brackets are variances.)

PREDICTION  CNP NP ATTNNP  DSVNP

INTER -0.802  -0.958  -1.149 -0.975
(1E-6)  (2E-5) (8E-6) (2E-5)

EXTRA 1.764  8.192  8.091 4.203

(1E-1) (7El) (7E2) (9£0)
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Discoveries in 1-D Simulation Experiments in terms of fitting errors and uncertainty
quantification (UQ) :

(a) CNP (b) NP (c) AttnNP (d) DSVNP
. . . . . A P AN M N N
e Episdemic uncertainty in a single curve : WA M/\ W ‘M/N AVARE S AV
. . \M ¥ N
NP /AttnNP — over-confident in some
. s/ " —
regions Y A ﬁ\/“’\/\ v \ M/N\/‘

,/‘l

@ Interpolation in curves of a SP: 'y o i

AttnNP >~ DSVNP = NP > CNP

(F|tt| ng/ U Q Pe rform an Ce) Table 2. Average Negative Log-likelihoods over all target points
on realizations from Synthetic Stochastic Process. (Figures in
brackets are variances.)

@ Extrapolation in curves of a SP:

PREDICTION CNP NP ATTNNP  DSVNP
Tough for all in fitting; NP/AttnNP — INTER -0.802 -0.958 -1.149  -0.975
. (1E-6)  (2E-5) (8E-6) (2E-5)
over-confident; DSVNP — better UQ EXTRA 1764 8192 8.091  4.203

(1E-1) (7El) (7E2) (9£0)
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Multi-output Regression: Simulation/Real-world Dataset

Investigations on (1) system identification on cart-pole transitions [9]; (2) regression on
real-world dataset :

@ System identification :

@ High-dim regression :
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Multi-output Regression: Simulation/Real-world Dataset

Investigations on (1) system identification on cart-pole transitions [9]; (2) regression on

real-world dataset :

@ System identification :
MSE & NLL not in accordance; DSVNP
& CNP — better UQ; DSVNP & AttnNP

— lower fitting error. 4+ ol
NG
@ High-dim regression :
fe
—

Table 3. Predictive Negative Log-Likelihoods and Mean Square
Errors on Cart-Pole State Transition Testing Dataset. (Figures in
brackets are variances.)

METRICS CNP NP ATTNNP  DSVNP

NLL -2.014  -1.537 -1.821 -2.145
(9e-4)  (1E-3) (7E-3) (9E-4)

MSE 0.096  0.074  0.067 0.036

(3B-4)  (2E-4)  (1E-4) (2.1E-5)
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Multi-output Regression: Simulation/Real-world Dataset

Investigations on (1) system identification on cart-pole transitions [9]; (2) regression on
real-world dataset :

@ System identification :

MSE & NLL not in accordance; DSVNP
Table 3. Predictive Negative Log-Likelihoods and Mean Square
& C N P — better U Q’ DSV N P & Attn N P . Errors on Cart-Pole State Transition Testing Dataset. (Figures in

. . brackets are variances.)
— lower fitting error.

METRICS CNP NP ATTNNP  DSVNP

H H H . NLL -2.014  -1.537 -1.821 -2.145

@ High-dim regression : Okd)  (1E-3) (K3 (954
MSE 0.096 0.074 0.067 0.036

Hierarchical latent variables advance
performance significantly.

(3B-4)  (2E-4)  (1E-4) (2.1E-5)

Table 4. Predictive MSEs on Multi-Output Dataset. CNP’s results are for target points. D records (input,output) dimensions, and N is the
number of samples. MC-Dropout runs 50 stochastic forward propagation and average results for prediction in each data point. (Figures in
brackets are variances.)

DATASET N D MC-DroPOUT  CNP NP ATTNNP DSVNP
SARCOS 48933 (21.7) 1.215(3E-3) 1.437(2.9e-2)  1.285(1.2E-1) 1.362(8.4E-2) 0.839(1.5E-2)
W 1060 (16,14)  0.007(9.6E-8)  0.015(2.4E-5) 0.007(5.2E-6) 0.01(8.5E-6) 0.006(1.6E-6)

Q
SCM20D 8966 (61.16) 0.017(2.4e-7)  0.037(6.7€-5)  0.015(7.1E-8)  0.015(8.1E-7)  0.007(2.3E-7)
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Classification wit certainty Quantification

Observations in image classification and out of distribution detection (based on cumulative
distribution of entropies) :

— NN MC-Dropout ~—— CNP —— NP —— AttnNP  —— DSVNP
MNIST(Domain) | FMNIST(0.0.0) KMNIST(0.0.0.) Gaussian(0.0.0.) Uniform(0.0.0.)

o8

os

02

00

ciFarto(Domain) * svhRi0.00)  ° °  Rademacher(0.0.0) *
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Classification with Uncertainty Quantification

Observations in image classification and out of distribution detection (based on cumulative
distribution of entropies) :

e MNIST: no significant difference in classification performance/o.0.d detection (all above
99%) ; DSVNP — better 0.0.d. detection on FMNIST/KMNIST ; MC-D more robust to
Gaussian/Uniform noise.
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Classification with Uncertainty Quantification

Observations in image classification and out of distribution detection (based on cumulative
distribution of entropies) :

MNIST(Domain) | FMNIST(0.0.0. KMNIST(0.0.D. Gaussian(0.0.0. Uniform(0.0.0.)
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e MNIST: no significant difference in classification performance/o.0.d detection (all above
99%) ; DSVNP — better o.0.d. detection on FMNIST/KMNIST ; MC-D more robust to
Gaussian/Uniform noise.

e CIFAR10: DSVNP(86.3%) = MC/CNP > AttnNP/NP > NN (Classification
Performance) ; DSVNP — best entropy distributions in domain dataset and most robust

to Rademacher noise.
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Future Works

63 /69



Some Challenging and Promising Directions

@ More effective inference methods for our proposed hierarchical SPs
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Some Challenging and Promising Directions

@ More effective inference methods for our proposed hierarchical SPs

@ More expressive context latent variable using higher order statistics

@ More explorations to Uncertainty-aware Decision-making Problems
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