
Haar Graph Pooling

Yu Guang Wang

UNSW/MPI
yuguang.wang@mis.mpg.de

Yanan Fan (UNSW) Ming Li (ZJNU) Zheng Ma (Princeton)
Guido Montúfar (UCLA/MPI) Xiaosheng Zhuang (CityU HK)

ICML 2020

Graph Classification on Quantum Chemistry

Graph-structured data: two molecules with atoms as
nodes and bonds as edges. The number of nodes of
each molecule is different and each has its own molecu-
lar structure. The input data set in graph classification or
regression is a set of pairs of such individual graph and
the feature defined on the graph nodes.

Graph Neural Networks

Deep graph neural networks (GNNs) are designed to work with graph-

structured inputs. A GNN is typically composed of multiple graph convolution

layers, graph pooling layers, and fully connected layers. Computational flow of

a Graph Neural Network consisting of three blocks of GCN graph convolutional

and HaarPooling layers, followed by an MLP. In this example, the output feature

of the last pooling layer has dimension 4, which is the number of input units of

the MLP.

Extracting Structural Information by Graph Convolution

• Spatial-based Graph Convolution A typical example is the
widely used GCNConv, proposed by Kipf & Welling (2017).

Xout = ÂX inW.

• Here Â = D̃−1/2(A + I)D̃−1/2 ∈ RN×N is a normalized ver-
sion of the adjacency matrix A of the input graph, where I is
the identity matrix and D̃ is the degree matrix for A+ I.

• Further, X in ∈ RN×d is the array of d-dimensional features
on the N nodes of the graph, and W ∈ Rd×m is the filter
parameter matrix.

How GNNs handle input graphs with varying number of nodes and
connectivity structures?

• One way is to utilize graph pooling. It is a computational
strategy to reduce the number of graph nodes while preserve
as much as geometric information of the original input graph
data; in this way, one has a unified graph-level rather than
node-level representation for graph-structured data while the
size and topology of an individual graph are changing.

Haar Graph Pooling

HaarPooling provides cascading pooling layers, i.e., for each layer, we define an
orthonormal Haar basis and its compressive Haar transform. Each HaarPooling
layer pools the graph input from the previous layer to output with a smaller node
number and the same feature dimension. In this way, all the HaarPooling layers
together synthesize the features of all graph input samples into feature vectors with
the same size. We then obtain an output of a fixed dimension, regardless of the
size of the input.

Definition

The HaarPooling for a graph neural network with K pooling layers is defined as

Xout
j = ΦT

j X
in
j , j = 0, 1, . . . ,K − 1,

where Φj is the Nj ×Nj+1 compressive Haar basis matrix for the jth layer,
Xin

j ∈ RNj×dj is the input feature array, and Xout
j ∈ RNj+1×dj is the output

feature array, for some Nj > Nj+1, j = 0, 1, . . . ,K − 1, and NK = 1. For each j,
the corresponding layer is called the jth HaarPooling layer.

Haar Graph Pooling

Xout
j = ΦT

j X
in
j , j = 0, 1, . . . ,K − 1.

First, the HaarPooling is a hierarchically structured algorithm, and has a global
design. The coarse-grained chain determines the hierarchical relation in differ-
ent HaarPooling layers. The node number of each HaarPooling layer is equal
to the number of nodes of the subgraph of the corresponding layer of the chain.
As the top-level of the chain can have one node, the HaarPooling finally reduces
the number of nodes to one, thus producing a fixed dimensional output in the
last HaarPooling layer.

The HaarPooling uses the sparse Haar representation on chain structure. In
each HaarPooling layer, the representation then combines the features of input
Xin

j with the structural information of the graphs of the jth and (j + 1)th layers
of the chain.

By the property of the Haar basis, the HaarPooling only drops the high-
frequency information of the input data. The Xout

j mirrors the low-frequency
information in the Haar wavelet representation of Xin

j . Thus, HaarPooling pre-
serves the essential information of the graph input, and the network has small
information loss in pooling.

Chain

a b c d e f g h G0

a b c d e f g h G1

a b c d e f g h G2 • Based on chain

GJ0→J = (GJ0 , . . . ,GJ)

• Chain by clustering methods,
spectral clustering, k-means,
METIS

Computing Strategy of HaarPooling

(a) First HaarPooling Layer for G0 → G1.

(b) Second HaarPooling Layer for

G1 → G2.

• In the first layer, the input Xin
1 of size 8 × d1 is transformed by the compressive

Haar basis matrix Φ
(0)
8×3 which consists of the first three column vectors of the full

Haar basis Φ
(0)
8×8 in (a), and the output is a 3× d1 matrix Xout

1 .

• In the second layer, the input Xin
2 of size 3 × d2 (usually Xout

1 followed by con-
volution) is transformed by the compressive Haar matrix Φ

(1)
3×1, which is the first

column vector of the full Haar basis matrix Φ
(1)
3×3 in (b).

Computing Strategy of HaarPooling (Continued)

(a) First HaarPooling Layer for G0 → G1.

(b) Second HaarPooling Layer for

G1 → G2.

• By the construction of the Haar basis in relation to the chain, each of the first three
column vectors φ(0)1 , φ

(0)
2 and φ(0)3 of Φ

(0)
8×3 has only up to three different values.

This bound is precisely the number of nodes of G1.

• This example shows that the HaarPooling amalgamates the node feature by
adding the same weight to the nodes that are in the same cluster of the coarser
layer, and in this way, pools the feature using the graph clustering information.

Construction of Haar Basis

a b c d e f g h G0

a b c d e f g h G1

a b c d e f g h G2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Gavish et al. (2010), Chui et al. (2015).
• Haar basis is constructed from top to bottom, ` ≤ N (1)

φ
(2)
1 (u(2)) = 1, φ

(1)
1 (u(1)) = 1(u(1))/

√
N1

φ
(1)
` (u(1)) =

√
N (1) − `+ 1

N (1) − `+ 2

χ(1)
`−1(u

(1))−
∑N(1)

j=` χ
(1)
j (u(1))

N (1) − `+ 1

 .

• Extend to layer G(0): for k = 2, . . . , k`, k` = |u(1)` |, we let

φ`,1(v) :=
φ
(1)
` (v(1))√
|v(1)|

, φ`,k =

√
k` − k + 1

k` − k + 2

(
χ`,k−1 −

∑k`

j=k χ`,j

k` − k + 1

)

where χ`,j for j = 1, . . . , k`, χ`,j is the indicator function on {v`,j}.

Sparsity of Haar Basis Matrix

• Haar Basis for Cora

• Citation network Cora:
2708 nodes, 5429 edges

• Chain by METIS

• Sparsity: 98.84%

HaarPool for Benchmark Graph Classification

Table 2 reports the classification test accuracy. GNNs with HaarPooling have excellent
performance on all datasets. In 4 out of 5 datasets, it achieves top accuracy. It shows
that HaarPooling, with an appropriate graph convolution, can achieve top performance
on a variety of graph classification tasks, and in some cases, improve state of the art by
a few percentage points.

Quantum Chemistry Graph Regression

• QM7 is a collection of 7, 165 molecules,
train/test = 4/1.

• Each molecule contains ≤ 23 atoms (in-
cluding C, O, N, S), atoms are con-
nected by bonds, molecular structure
varies (e.g. double/triple bonds, cycles,
carboxy, cyanide ...).

• Molecule is a graph, atoms are nodes,
bonds are edges and Coulomb energy as
weights, then Coulomb energy matrix is
adjacency matrix.

• Task: to predict atomization energy of
molecule given the molecular structure.

HaarPool for QM7

Table 5 shows the results for GCN-HaarPool and GCN-SAGPool, together with the public
results of the other methods from Wu et al. (2018). . Compared to the GCN-SAGPool,
the GCN-HaarPool has a lower average test MAE and a smaller SD and ranks the top
in the table.

Loss MSE and Validation MAE

We present the mean and SD of the training MSE loss (for normalized input) and the
validation MAE (which is in the original label domain) versus the epoch. It illustrates
that the learning and generalization capabilities of the GCN-HaarPool are better than
those of the GCN-SAGPool; in this aspect, HaarPooling provides a more efficient graph
pooling for GNN in this graph regression task.

Computational Complexity

In Table 2, the HaarPool is the only pooling method which has time complexity propor-
tional to the number of nodes and thus has a faster implementation.

GPU time comparison
For empirical comparison, we computed the GPU time for HaarPool and TopKPool on a
sequence of datasets of random graphs. For each run, we fix the number of edges of the
graphs. For different runs, the number of the edges ranges from 4000 to 121000. The
sparsity of the adjacency matrix of the random graph is set to 10%. The following table
shows the average GPU time (in seconds) for pooling a minibatch of 50 graphs. For
both pooling methods, we use the same network architecture and one pooling layer, and
same network hyperparameters, and run under the same GPU computing environment.
The table shows that the cost of HaarPool does not change much as the edge number
increases, while the cost of TopKPool increases rapidly. When the edge number is at
most 25000, TopKPool runs slightly faster than HaarPool, but when the number exceeds
25000, the GPU time of TopKPool is longer.

Paper and codes

Thank you!

Paper https://arxiv.org/abs/1909.11580

Codes https://github.com/YuGuangWang/HaarPool

https://arxiv.org/abs/1909.11580
https://github.com/YuGuangWang/HaarPool

	Introduction

