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Distributed Online Learning over a Network

Formal definition
1: for t = 1,2, . . . ,T do
2: for each local learner i ∈ [n] do
3: pick a decision xi(t) ∈ K

receive a convex loss function ft ,i(x) : K → R
4: communicate with its neighbors and update xi(t)
5: end for
6: end for

Regret of local learner i

RT ,i =
T∑

t=1

ft (xi(t))−min
x∈K

T∑
t=1

ft (x)

Applications
multi-agent coordination
distributed tracking in sensor networks
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Projection-based Methods

Distributed Online Dual Averaging [Hosseini et al., 2013]

1: for each local learner i ∈ [n] do
2: Play xi(t) and compute gi(t) = ∇ft ,i(xi(t))
3: zi(t + 1) =

∑
j∈Ni

Pijzj(t) + gi(t)
4: xi(t + 1) = Πψ

K(zi(t + 1), α(t))
5: end for

Pij > 0 only if (i , j) ∈ E or Pij = 0
ψ(x) : K → R is a proximal function, e.g., ψ(x) = ‖x‖22
projection step: Πψ

K(z, α) = argminx∈K z>x + 1
αψ(x)

α(t) = O(1/
√

t)→ RT ,i = O(
√

T )

Distributed Online Gradient Descent [Ram et al., 2010]

also need a projection step

http://www.lambda.nju.edu.cn/wanyy Projection-free Distributed Online Learning

Learning And Mining from DatA

A DAML

http://www.lambda.nju.edu.cn/wanyy


Introduction Algorithms Experiments Conclusion Background The Problem and Our Contributions

Projection-based Methods

Distributed Online Dual Averaging [Hosseini et al., 2013]

1: for each local learner i ∈ [n] do
2: Play xi(t) and compute gi(t) = ∇ft ,i(xi(t))
3: zi(t + 1) =

∑
j∈Ni

Pijzj(t) + gi(t)
4: xi(t + 1) = Πψ

K(zi(t + 1), α(t))
5: end for

Pij > 0 only if (i , j) ∈ E or Pij = 0
ψ(x) : K → R is a proximal function, e.g., ψ(x) = ‖x‖22
projection step: Πψ

K(z, α) = argminx∈K z>x + 1
αψ(x)

α(t) = O(1/
√

t)→ RT ,i = O(
√

T )

Distributed Online Gradient Descent [Ram et al., 2010]

also need a projection step

http://www.lambda.nju.edu.cn/wanyy Projection-free Distributed Online Learning

Learning And Mining from DatA

A DAML

http://www.lambda.nju.edu.cn/wanyy


Introduction Algorithms Experiments Conclusion Background The Problem and Our Contributions

Projection-free Methods

Motivation: the projection step could be time-consuming
if K is a trace norm ball, it requires SVD of a matrix

Distributed Online Conditional Gradient [Zhang et al., 2017]

1: for each local learner i ∈ [n] do
2: Play xi(t) and compute gi(t) = ∇ft ,i(xi(t))
3: vi = argminx∈K∇Ft ,i(xi(t))>x
4: xi(t + 1) = xi(t) + st (vi − xi(t))
5: zi(t + 1) =

∑
j∈Ni

Pijzj(t) + gi(t)
6: end for

Ft ,i(x) = ηzi(t)>x + ‖x− x1(1)‖22
η = O(T−3/4), st = 1/

√
t → RT ,i = O(T 3/4)

only contain linear optimization step (step 3)
T communication rounds
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Question

Can the O(T ) communication complexity of distributed online
conditional gradient (D-OCG) be reduced?

An affirmative and non-trivial answer
distributed block online conditional gradient (D-BOCG)
communication complexity: from O(T ) to O(

√
T )

regret bound: O(T 3/4)

An extension to the bandit setting
distributed block bandit conditional gradient (D-BBCG)
communication complexity: O(

√
T )

high-probability regret bound: Õ(T 3/4)
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Main Idea

Delayed update mechanism

block 1 block m block 

only update in the beginning of each block
only need

√
T communication rounds

Iterative linear optimization steps
recall the update rules of D-OCG

vi = argmin
x∈K

∇Ft ,i(xi(t))>x

xi(t + 1) = xi(t) + st (vi − xi(t))

delayed update + D-OCG: a worse regret bound
multiple linear optimization steps for each update
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Conditional Gradient with Stopping Condition (CGSC)

CGSC [Garber and Kretzu, 2019]

1: Input: feasible set K, ε > 0, L, F (x), xin

2: τ = 0,c1 = xin

3: repeat
4: τ = τ + 1
5: vτ ∈ argmin

x∈K
∇F (cτ )>x

6: sτ = argmin
s∈[0,1]

F (cτ + s(vτ − cτ ))

7: cτ+1 = cτ + sτ (vτ − cτ )
8: until ∇F (cτ )>(cτ − vτ ) ≤ ε or τ = L
9: return xout = cτ

F (xout) is very small with appropriate L and ε
it was widely studied [Frank and Wolfe, 1956, Jaggi, 2013]
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The Proposed D-BOCG Algorithm

1: Initialization: choose {xi(1) = 0 ∈ K|i ∈ V} and set
{zi(1) = 0|i ∈ V}

2: for t = 1, · · · ,T do
3: mt = dt/K e
4: for each local learner i ∈ V do
5: if t > 1 and mod(t ,K ) = 1 then
6: ĝi(mt − 1) =

∑t−1
k=t−K gi(k)

7: zi(mt ) =
∑

j∈Ni
Pijzj(mt − 1) + ĝi(mt − 1)

8: define Fmt ,i(x) = ηzi(mt )
>x + ‖x‖22

9: xi(mt ) = CGSC(K, ε,L,Fmt ,i(x),xi(mt − 1))
10: end if
11: play xi(mt ) and observe gi(t) = ∇ft ,i(xi(mt ))
12: end for
13: end for
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Regret of D-BOCG

Theorem 1

Let η = O(T−3/4), ε = O(T−1/2), K =
√

T and L = O(
√

T ). For
any i ∈ V, D-BOCG has

RT ,i ≤ O(GRT 3/4).

Assumptions
|ft ,i(x)− ft ,i(y)| ≤ G‖x− y‖2 for any x,y ∈ K
rBd ⊆ K ⊆ RBd , Bd is the unit Euclidean ball
P ∈ Rn×n is symmetric and doubly stochastic, i.e.,

P = P>,1>P = 1>,P1 = 1

Remarks
regret bound: RT ,i = O(T 3/4)

#communication rounds: T/K =
√

T
#linear optimization steps: LT/K = O(T )
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Standard Technique

Bandit setting
only the loss value is available to learners
the main challenge is due to the lack of gradient

One-point Gradient Estimator [Flaxman et al., 2005]

δ-smoothed version of f (x)

f̂δ(x) = Eu∼Bd [f (x + δu)]

let δ > 0 and Sd be the unit sphere

∇f̂δ(x) = Eu∼Sd

[
d
δ

f (x + δu)u
]

only observe the single value f (x + δu)

A smaller set Kδ ⊆ K
Kδ = (1− δ/r)K = {(1− δ/r)x|x ∈ K}, 0 < δ ≤ r
x + δu ∈ K for x ∈ Kδ,u ∼ S
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The Proposed D-BBCG Algorithm

1: Initialization: choose {xi(1) = 0 ∈ Kδ|i ∈ V} and set
{zi(1) = 0|i ∈ V}

2: for t = 1, · · · ,T do
3: mt = dt/K e
4: for each local learner i ∈ V do
5: if t > 1 and mod(t ,K ) = 1 then
6: ĝi(mt − 1) =

∑t−1
k=t−K gi(k)

7: zi(mt ) =
∑

j∈Ni
Pijzi(mt − 1) + ĝi(mt − 1)

8: define Fmt ,i(x) = ηzi(mt )
>x + ‖x‖22

9: xi(mt ) = CGSC(Kδ, ε,L,Fmt ,i(x),xi(mt − 1))
10: end if
11: ui(t) ∼ Sd

12: play yi(t) = xi(mt ) + δui(t) and observe ft ,i(yi(t))
13: gi(t) = d

δ ft ,i(yi(t))ui(t)
14: end for
15: end for
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Regret of D-BBCG

Theorem 2

Let η = O(T−3/4), δ = O(T−1/4), ε = O(T−1/2), K = T 1/2 and
L = O(

√
T ). For any i ∈ V, with high probability, D-BBCG has

RT ,i ≤ Õ(T 3/4).

Additional Assumption
all local loss functions are chosen beforehand

Remarks
high-probability regret bound: RT ,i = Õ(T 3/4)

#communication rounds: T/K =
√

T
#linear optimization steps: LT/K = O(T )
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RT ,i ≤ Õ(T 3/4).

Additional Assumption
all local loss functions are chosen beforehand

Remarks
high-probability regret bound: RT ,i = Õ(T 3/4)
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Experimental Settings

Distributed multiclass classification [Zhang et al., 2017]

1: for t = 1,2, . . . ,T do
2: for each local learner i ∈ [n] do
3: receive an example ei(t) ∈ Rk , and choose

Xi(t) = [x>1 ; x>2 ; · · · ; x>h ] ∈ K
4: receive the true label yi(t), and suffer the multivariate

logistic loss
ft ,i(Xi(t)) = log

(
1 +

∑
6̀=yi (t) ex>

` ei (t)−x>
yi (t)

ei (t))
5: communicate with its neighbors and update Xi(t)
6: end for
7: end for

K = {X ∈ Rh×k |‖X‖∗ ≤ τ}, where ‖X‖∗ denotes the trace
norm of X and τ is a constant
the network is a cycle graph with 9 nodes
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Experimental Results

aloi dataset from the LIBSVM repository [Chang and Lin, 2011]
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Experimental Results

poker dataset from the LIBSVM repository
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Conclusion and Future Work

Conclusion
D-BOCG enjoys an O(T 3/4) regret bound with only O(

√
T )

communication rounds
D-BBCG for bandit setting enjoys a high-probability Õ(T 3/4)
regret bound with only O(

√
T ) communication rounds

Future Work
improve the regret bound of projection-free distributed on-
line learning by utilizing the curvature of functions
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