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Dynamic Mechanism Design

e Selling online advertisements via repeated auctions inspires the research on dynamic mechanism
design in the past decade [ADH 16, MPTZ 18]:

Dynamic Mechanism Static Mechanism
e Mechanism depends on the history e Mechanism ignores the history
For example, For example,
e Dynamic reserve pricing e Repeated second-price auctions

e Dynamic auctions open up the possibility of evolving the auctions across time to boost revenue.
o The revenue gap between dynamic and static mechanism can be arbitrarily large [PPPR 16]




Dynamic Mechanism Design

e Dynamic auctions open up the possibility of evolving the auctions across time to boost revenue.
o Therevenue gap between dynamic and static mechanism can be arbitrarily large [PPPR 16]

However
e Dynamic mechanism complicates the buyer's long-term incentive
o the buyers’ current bids may change the future mechanism
o e.g., shading the bids in past may lower the reserve in the future

To align the buyer’s incentives, perfect distributional knowledge is usually required

e Such a reliance limits the application of dynamic mechanism design in practice
o The seller may only have access to estimated distributions
o The seller may need to learn the distributions




Our Contribution

To align the buyer’s incentives, perfect distributional knowledge is usually required

e We develop a framework for robust dynamic mechanism design
o its revenue performance is robust against
m estimation error on the valuation distributions and the buyer’s strategic behavior
m i.e., the revenue loss can be bounded by the estimation error

e We apply our framework to contextual auctions
o where the seller needs to learn the valuation distributions
o obtain the first, to the best of our knowledge, no-regret dynamic pricing policy against
revenue-optimal dynamic mechanism that has perfect distributional knowledge




Bayesian Dynamic Environment
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1. One item arrives at stage t
2. The buyer observes private v, drawn independently from F,
3. The buyer submits bid b, to the seller
4. The seller only knows an estimated distribution F*,, and he will determine:
o Allocation probability z¢(b(1,4), F(’I,T)) and Payment p¢(b(1.+), F(,l,T))
e The buyer’s utility is ut(b(l,t)7 F(,l,T)) =g iBt(b(l,t), F(,l,T)) - pt(b(l,t)7 F(’l,T))

o additive across items




Impatient Buyer & Imperfect Distributional Knowledge

e We assume the buyer is impatient
o she discounts her future utility at a factor y
o itisimpossible to obtain a no-regret policy for a patient buyer [ARS 13]

e Imperfect distributional knowledge (estimation error)
o The estimation error is A if there exists a coupling between a random draw v, drawn
independently from F, and v’, drawn independently from F’, such that

Vi = ’U,,; + €; with €; € [—A, A]

o Intuitively, samples from the estimated distribution have a bounded bias
o This measurement is consistent with the model of contextual auctions




approximate Dynamic Incentive Compatibility

exact dynamic-IC notion [MPTZ 18] (for long-term utility maximizers):

e For every stage, reporting truthfully is an optimal strategy
o assuming the buyer plays optimally (to maximize her cumulative utility) in the future

e |Impossible to achieve exact dynamic-IC without perfect distributional knowledge
o  with a non-trivial dynamic mechanism

approximate dynamic-IC notion:

e For every stage, reporting a bid close to her true valuation is an optimal strategy
o assuming the buyer plays optimally (to maximize her cumulative utility) in the future




Challenges

e Impossible to achieve exact dynamic-IC
o Attempt to achieve approximate dynamic-IC
m How to bound the magnitude of the misreport for dynamic mechanisms?

e Revenue performance
o Future mechanism depends on the buyer’s reports in the past
m A misreport could change the structure of future mechanisms and their revenues
m How to bound the revenue loss due to misreport for dynamic mechanisms?

e We propose a framework to robustify dynamic mechanism so that
o the magnitude of misreport can be bounded by the estimation errors
o the revenue loss due to misreport can be bounded by the magnitude of misreport

=> the revenue loss against strategic buyers can be bounded by the estimation errors




Bound the Misreport

Our framework is based on the bank account mechanism [MPTZ 18]

e itis without loss of generality to consider bank account mechanism: any dynamic mechanism can
be reduced to a bank account mechanism without loss of any revenue or welfare

e Bank account mechanism enjoys a property called utility independence
o the buyer’'s expected utility (under truthful bidding) at a stage is independent of the history
o i.e., the buyer’s historical bids have no impact on her future expected utility

o Remark: although the expected utility is the same, the mechanism can be different




Utl|lty Independence (Example) [PPPR, SODA'16]

Stage 1 Stage 2
1 1 . j 1 . n
Prv;=2'] = o forie {1,---,n} Pr (v, = 27] = T for j € {1,---,2"}
e Run the first-price auction _ _ .
o bidb,; gettheitem and pay b, e Give the item for free with prob. b,/2"
o no matter what b, is
e Buyer’'s utility under valuation v, e Buyer's expected utility
b b
U1 — bl Evz l’l)z . -2—7111 =, Evz [’Uz] . -2—711, =b

Dynamic-IC and Revenueis n

e (discrete) equal revenue distributions for both stages
o  Selling separately using the optimal static mechanism gives revenue 2 per stage
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Payment Realignment

Stage 1
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e Run the first-price auction
o bidb,; gettheitemand pay b,

e Buyer’'s utility under valuation v,
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Payment Realignment

Stage 1 Stage 2
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Payment Realignment
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Utility Independence
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Bound the Misreport

e Bank account mechanism enjoys a property called utility independence
o the buyer’'s expected utility at a stage is independent of the history
o i.e., the buyer’s historical bids have no impact on her future expected utility
o (under perfect distributional knowledge)

Under imperfect distributional knowledge

e the buyer's expected utility at a stage is within a range related to the estimation error




approximate Utility Independence
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approximate Utility Independence

Stage 1 Stage 2 Stage 3 Stage 4




Bound the Misreport

e Bank account mechanism enjoys a property called utility independence
o the buyer’'s expected utility at a stage is independent of the history
o i.e., the buyer’s historical bids have no impact on her future expected utility

Under imperfect distributional knowledge

e the buyer’'s expected utility at a stage is within a range related to the estimation error
e so that the buyer’s utility gain at this stage from misreporting in the past is at most the range

High-level idea [G)M19]: create punishment for misreporting

e Mix the dynamic mechanism with a random posted-price auction
o where a take-it-or-leave-it price is randomly drawn
o Property: the larger the misreport is, the larger the utility loss would be




Bound the Revenue Loss

Extensively exploit the structure of bank account mechanisms

e Develop new tools for analyzing bank account mechanisms:
o new ways to edit and concatenate bank account mechanisms for robustification
m change the dynamics of the mechanism
m Wwhile preserve the bank account structure
o aprogram to compute the revenue performance with strategic buyers even when the
distributional information is not perfect
m leads to bounds on revenue loss due to misreport

e With tools at hand
o Develop bank account mechanisms whose revenue is robust against misreport
o i.e., therevenue loss can be bounded by the magnitude of the misreport




Challenges

e Impossible to achieve exact dynamic-IC
o Attempt to achieve approximate dynamic-IC
m How to bound the magnitude of the misreport for dynamic mechanisms?

e Revenue performance
o Future mechanism depends on the buyer’s reports in the past
m A misreport could change the structure of future mechanisms and their revenues
m How to bound the revenue loss due to misreport for dynamic mechanisms?

e We propose a framework to robustify dynamic mechanism so that
o the magnitude of the misreport can be bounded
m  mix in random posted-price auctions
o the revenue loss due to misreport can be bounded
m revenue-robust dynamic mechanism




Conclusion & Future Work

Summary:

e We develop a framework for robust dynamic mechanism design
o revenue robust against estimation error on distribution and strategic behavior
e As an application, we obtain a no-regret dynamic pricing policy for contextual auctions

Future Work:

e Improve our bounds
o better revenue loss bound of the framework
o better no-regret bound for contextual auctions
o lower bounds?
e Apply our framework to environments more general than contextual auctions
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