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One-Slide Summary

Objective: Estimate the Conditional Value-at-Risk (CVaR) cα(X) of a
r.v. X from n i.i.d. samples

Our Contributions: Concentration bounds P [|cn,α − cα(X)| > ϵ]

..1) Sub-Gaussian distributions: Our bounds match an existing result,
but with better constants

..2) Light-tailed distributions: We derive an O(exp(−cnmin(ϵ, ϵ2))) tail
bound for an empirical CVaR estimator

..3) Heavy-tailed distributions with bounded variance: We derive an
O(exp(−cnϵ2)) tail bound for a truncated CVaR estimator.

..4) Bandit application: Best CVaR arm identification and error bounds
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What is Conditional Value-at-Risk (CVaR)?



VaR and CVaR are Risk Metrics

• Widely used in financial portfolio optimization, credit risk
assessment and insurance

• Let X be a continuous random variable

• Fix a `risk level' α ∈ (0, 1) (say α = 0.95)

Value at Risk:
..vα(X) = F−1X (α)

Conditional Value at Risk:
..cα(X) = E [X|X > vα(X)]

..= vα(X) +
1

1− α
E [X− vα(X)]+



VaR and CVaR are Risk Metrics

• Widely used in financial portfolio optimization, credit risk
assessment and insurance

• Let X be a continuous random variable

• Fix a `risk level' α ∈ (0, 1) (say α = 0.95)

Value at Risk:
..vα(X) = F−1X (α)

Conditional Value at Risk:
..cα(X) = E [X|X > vα(X)]

..= vα(X) +
1

1− α
E [X− vα(X)]+



VaR and CVaR are Risk Metrics

• Widely used in financial portfolio optimization, credit risk
assessment and insurance

• Let X be a continuous random variable

• Fix a `risk level' α ∈ (0, 1) (say α = 0.95)

Value at Risk:
..vα(X) = F−1X (α)

Conditional Value at Risk:
..cα(X) = E [X|X > vα(X)]

..= vα(X) +
1

1− α
E [X− vα(X)]+



CVaR Estimation and Concentration bounds



CVaR estimation

Problem: Given i.i.d. samples X1, . . . , Xn from the distribution F of r.v.
X, estimate

..cα(X) = E [X|X > vα(X)]

..Nice to have: Sample complexity O
(
1/ϵ2

)
for accuracy ϵ



Empirical VaR and CVaR Estimates

Empirical distribution function (EDF): Given samples X1, . . . , Xn from
distribution F,

..F̂n(x) = 1
n
∑n

i=1 I {Xi ≤ x} , x ∈ R

Using EDF and the order statistics X[1] ≤ X[2] ≤ . . . , X[n],

VaR estimate:

..v̂n,α = inf{x : F̂n(x) ≥ α} = X[⌈nα⌉].

CVaR estimate:

..ĉn,α = v̂n,α + 1
n(1−α)

∑n
i=1 (Xi − v̂n,α)+
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Empirical CVaR concentration: What is known ?

Goal: Bound ..P [|ĉn,α − cα(X)| > ϵ]

Distribution type Reference Salient Feature

Bounded support [Wang et al. ORL 2010] exp(−cnϵ2)

Sub-Gaussian/ [Kolla et al. ORL 2019] VaR conc.
sub-exponential One-sided CVaR

Sub-Gaussian [S. Bhat & P. L.A. NeurIPS 2019] Wasserstein

Sub-exponential/ This work
Heavy-tailed



VaR Concentration 1

Assumption (A1): X is a continuous r.v. with a CDF F that satisfies a
condition of sufficient growth around the VaR vα: There exists
constants δ, η > 0 such that

min (F (vα + δ)− F (vα) , F (vα)− F (vα − δ)) ≥ ηδ.

Lemma (VaR concentration)

Suppose that (A1) holds. We have for all ϵ ∈ (0, δ),

P [|v̂n,α − vα| ≥ ϵ] ≤ 2 exp
(
−2nη2ϵ2

)
.

Proof uses DKW inequality; no tail assumptions required.

1Concentration bounds for empirical conditional value-at-risk: The unbounded case;
R. Kolla, L.A. Prashanth, S. P. Bhat, K. Jagannathan; Operations Research Letters, 2019
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Concentration for CVaRα Estimator

• Obtaining concentration for CVaRα estimator is more
involved than for VaRα

• Need to make some assumptions on the tail distribution

• We work with three progressive broader distribution
classes

..(i) X is sub-Gaussian or
..(ii) X is sub-exponential (i.e., light-tailed) or

..(iii) X has a bounded second moment
• For (i) and (ii), we use the empirical CVaR estimator; for
(iii) we use a truncated CVaR estimator
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Sub-Gaussian and Sub-Exponential distributions

A random variable is X is sub-Gaussian if ∃ σ > 0 s.t.

..E
[
eλX
]
≤ eσ2λ2

2 , ∀λ ∈ R.

Or equivalently, letting Z ∼ N (0, σ2),

..P [X > ϵ] ≤ cP [Z > ϵ] ,∀ϵ > 0. .Tail dominated by a Gaussian

A random variable is X is sub-exponential if ∃ c0 > 0 s.t.

..E
[
eλX
]
<∞, ∀|λ| < c0.

Or equivalently, ∃σ,b > 0 s.t. ..E
[
eλX

]
≤ e

σ2λ2
2 , ∀|λ| ∈

1
b
. Or

..P [X > ϵ] ≤ c1 exp(−c2ϵ), ∀ϵ > 0. .Tail dominated by an exponential r.v .
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CVaR concentration for Sub-Gaussian case

Recall

..v̂n,α = inf{x : F̂n(x) ≥ α} = X[⌈nα⌉].

..ĉn,α = v̂n,α + 1
n(1−α)

∑n
i=1 (Xi − v̂n,α)+

Theorem (CVaR concentration for sub-Gaussian)
Assume (A1). Suppose that Xi, i = 1, . . . ,n are σ-sub-Gaussian.
Then, for any ϵ ∈ (0, δ), we have

P [|ĉn,α − cα| > ϵ] ≤ 6 exp [−nψ1(ϵ)] ,

where ψ1(ϵ) =
ϵ2(1− α)2min

(
η2, 1

)
8max (σ2, 8) .
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CVaR concentration for Sub-Exponential case

Recall

..v̂n,α = inf{x : F̂n(x) ≥ α} = X[⌈nα⌉].

..ĉn,α = v̂n,α + 1
n(1−α)

∑n
i=1 (Xi − v̂n,α)+

Theorem (CVaR concentration for sub-Exponential)
Assume (A1). Suppose that Xi, i = 1, . . . ,n are sub-exponential
with parameters σ,b. Then, for all ϵ ∈ (0, δ), we have

P [|ĉn,α − cα| > ϵ] ≤ 6 exp [−nψ2(ϵ)] ,

where ψ2(ϵ) = min
(
ϵ2(1− α)2min

(
η2, 1

)
8max (σ2, 8) ,

ϵ(1− α)

8b

)
.



Handling Heavy-Tailed distributions

• Heavy-tailed distributions occur commonly in finance
applications

• Tail of distribution decays slower than any exponential
—characterised by atypically large sample values

• Empirical estimates may be `thrown off' due to atypically
large values occurring early in the aggregating process

• Raw empirical estimates do not concentrate well around
true value

• Key Idea: Truncated estimator!
• Truncate large values, while slowly growing the truncation
threshold2

2Bubeck et. al., Bandits with Heavy-Tail, IEEE Trans. Inf. Thy., 2013.
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The Bounded (Second)Moment case: Truncated CVaR estimator

Assume ..(A2) ∃ u such that E[X2] < u <∞.

Truncated CVaR Estimator

..
ĉn,α = 1

n(1−α)

∑n
i=1 XiI {v̂n,α ≤ Xi ≤ Bi},

where Bi ∝
√
ui.
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CVaR Concentration for the Bounded Moment case

Theorem (CVaR concentration: Bounded second moment
case)
Let {Xi}ni=1 be a sequence of i.i.d. r.v.s satisfying (A1) and (A2).
Let ĉn,α be the truncated CVaR estimate formed using the
above set of samples. For all ϵ > 0,

P [|ĉn,α − cα| > ϵ] ≤ 2 exp
(
− n(1− α)2ϵ2

144
(√
u+ vα

)2
)

+ 4 exp
(
−
nη2(1− α)2min

(
ϵ2, δ2

)
144

)
,

where η and δ are as defined in (A1).



Bandit application



CVaR-aware bandits: Model

Known # of arms K and horizon n

Unknown Distributions Fk, k = 1, . . . ,K,
CVaR-values (at fixed risk level α) : c1, c2, . . . , cK

Interaction In each round t = 1, . . . ,n
• pull arm It ∈ {1, . . . ,K}
• observe a sample loss from FIt

Recommendation Arm Jn

Benchmark: k∗ = argmin
k=1,...,K

ck.

..Goal: Minimize probability of erroneous recommendation
P [Jn ̸= k∗]
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The Successive Rejects Algorithm3
.

.

.

Initial-
ization

.

.

A1 = {1, . . . ,K},

nk =

⌈
1

log(K)
n− K

K+ 1− k

⌉

.

.

Phase 1 .

.

Play each arm j ∈ A1, n1 times;
Set A2 = A1 \ argmax

j∈A1
ĉj,n1

.

.

Phase 2 .

.

Play each arm j ∈ A2,
n2 − n1 times; Eliminate . . .

.

.

...
.

.

...

.

.

Phase
K − 1

.

.

Play the remaining two
arms nK−1 − nK−2 times

• One arm played n1 times,
. . ., another played nK−2
times

• Two arms played nK−1
times

• n1 + . . .+ nK−1 + nK−1 ≤ n

• nk increases with k

• Adaptive exploration:
better than uniform (i.e.,
play each arm n/K times)

3Audibert et al., Best Arm Identification in Multi-armed Bandits, COLT 2010



Probability of error for Successive Rejects

• Suppose the arm distributions are all 1-sub-exponential.

• Given a simulation budget n, the probability that the SR
algorithm identifies a suboptimal arm as being optimal can be
bounded as

..P [Jn ̸= k∗] ≤ 3K(K− 1) exp
(
− (n−K)(1−α)2β

H2 log(K)

)
,

where β is a problem dependent constant (indep. of the gaps),
and

H2 = max
k=1,2,...,K

k
min(∆k,∆

2
k, δ

2
k)
,

where δk is the constant from (A1) for arm k's distribution



Concluding Remarks

• Derived a concentration bound for empirical CVaRα estimator
for sub-Gaussian and sub-exponential r.v.s

• A truncated CVaR estimator to handle heavy-tailed
distributions

• Showed a bandit application for best CVaRα arm identification,
and derived probability of error for SR algorithm



Thank you!


