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One-Slide Summary

Objective: Estimate the Conditional Value-at-Risk (CVaR) ¢, (X) of a
rv. X from n i.i.d. samples

Our Contributions: Concentration bounds P[|cp.o — Ca(X)| > €

1) Sub-Gaussian distributions: Our bounds match an existing result,
but with better constants

2) Light-tailed distributions: We derive an O(exp(—cn min(e, €2))) tail
bound for an empirical CVaR estimator

3) Heavy-tailed distributions with bounded variance: We derive an
O(exp(—cne?)) tail bound for a truncated CVaR estimator.

4) Bandit application: Best CVaR arm identification and error bounds
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VaR and CVaR are Risk Metrics

+ Widely used in financial portfolio optimization, credit risk
assessment and insurance

- Let X be a continuous random variable
- Fix a ‘risk level' o € (0,1) (say o = 0.95)

Value at Risk:
Vo (X) = Fx '(a)

Conditional Value at Risk:
Ca(X) = E XX > v (X)]
—Va(X) + ——EX—va (O]

11—«

Probability
0.00 0.05 ©0.10 0.15 0.20
I I




CVaR Estimation and Concentration bounds



CVaR estimation

Problem: Given i.i.d. samples X;, ..., X, from the distribution F of r.v.
X, estimate

ca(X) = E XX > va(X)]

Nice to have: Sample complexity O (1/¢?) for accuracy e



Empirical VaR and CVaR Estimates

Empirical distribution function (EDF): Given samples X;, ..., X, from
distribution F,

Fa(x) = 150, 1{X <x}, X € R

Using EDF and the order statistics X < Xp < ..., X[y,

VaR estimate:

V.o = Inf{x : Fo(x) > @} = X{na1)-



Empirical VaR and CVaR Estimates

Empirical distribution function (EDF): Given samples X;, ..., X, from
distribution F,

Fa(x) = 150, 1{X <x}, X € R

Using EDF and the order statistics X < Xp < ..., X[y,

VaR estimate:
V.o = Inf{x : Fo(x) > @} = X{na1)-

CVaR estimate:

6”,& - Vn,a + ﬁ 27:1 (XI - ‘7”,0&)+



Empirical CVaR concentration: What is known ?

Goal: Bound P[|Cn.a — Ca(X)| > €]

L Reference ‘ Salient Feature
Distribution type
Bounded support ‘ [Wang et al. ORL 2010] ‘ exp(—cne?)
Sub-Gaussian/ VaR conc.
. Kolla et al. ORL 201 .
sub-exponential Jelse g One-sided CVaR

Sub-Gaussian | [S. Bhat & P. LA. NeurIPS 2019] |  Wasserstein

Sub-exponential/ This work
Heavy-tailed




VaR Concentration’

Assumption (A1): X is a continuous rv. with a CDF F that satisfies a
condition of sufficient growth around the VaR v,: There exists
constants 6,7 > 0 such that

min (F (Ve +6) — F (Vo) , F(Va) — F (Ve — 0)) > né.

TConcentration bounds for empirical conditional value-at-risk: The unbounded case;
R. Kolla, L.A. Prashanth, S. P. Bhat, K. Jagannathan; Operations Research Letters, 2019



VaR Concentration’

Assumption (A1): X is a continuous rv. with a CDF F that satisfies a
condition of sufficient growth around the VaR v,: There exists
constants 6,7 > 0 such that

min (F (Ve +6) — F (Vo) , F(Va) — F (Ve — 0)) > né.

Lemma (VaR concentration)
Suppose that (A1) holds. We have for all e € (0, ),

P[|Vn,a — Va| > €] < 2exp (—2n7%¢%).

Proof uses DKW inequality; required.

TConcentration bounds for empirical conditional value-at-risk: The unbounded case;
R. Kolla, L.A. Prashanth, S. P. Bhat, K. Jagannathan; Operations Research Letters, 2019
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Concentration for CVaR, Estimator

+ Obtaining concentration for CVaR, estimator is more
involved than for VaR,

+ Need to make some assumptions on the tail distribution

- We work with three progressive broader distribution
classes
(i) X is sub-Gaussian or

(ii) X is sub-exponential (i.e., light-tailed) or
(iii) X has a bounded second moment

« For (i) and (ii), we use the empirical CvVaR estimator; for
(iii) we use a truncated CVaR estimator



Sub-Gaussian and Sub-Exponential distributions

A random variable is X is sub-Gaussian if 3o > 0 s.t.
02)\2
E [e’\x} <e 7 ,VAeR.

Or equivalently, letting Z ~ N(0, o2),

P[X > € < cP[Z>€],Ve> 0. Tail dominated by a Gaussian




Sub-Gaussian and Sub-Exponential distributions

A random variable is X is sub-Gaussian if 3o > 0 s.t.
02)\2
E [e’\x} <e 7 ,VAeR.

Or equivalently, letting Z ~ N(0, o2),

P[X > ¢] < cP[Z > €],Ve > 0. «———Tail dominated by a Gaussian

A random variable is X is sub-exponential if 3 ¢; > 0 s.t.
E [e”‘} < o0, Y|\ < ¢o.
Or equivalently, 3o, b > 0 st. E[eM] < eZ22 vl € %

P[X > €] < cqexp(—cze), Ve > 0. «———Tail dominated by an exponential r.v

Or



CVaR concentration for Sub-Gaussian case

Recall

Vn,a = inf{x : I,:_n(X) > a} = X[[noﬂ]'

El’l,oz - ‘A/n,a + ﬁ Zln:1 (XI - \7"7704)+



CVaR concentration for Sub-Gaussian case

Recall

Una = inf{x: Fn(x) > o} = Xfnay)-
En,a = Vnao+ ﬁ 2?21 (Xi — ‘A/n,a)Jr

Theorem (CVaR concentration for sub-Gaussian)

Assume (A1). Suppose that X;, i = 1,...,n are o-sub-Gaussian.
Then, for any € € (0,¢), we have

P[|Cn,a — Cal > €] < 6exp [—ny(e)],

(1—a)?min (n%,1)
8 max (c?,8)

where 1(e) =



CVaR concentration for Sub-Exponential case

Recall

Vn,a = inf{x : I,:_n(X) > a} = X[[noﬂ]'

El’),oz - \A/n,a + ﬁ 2?21 (XI - \7”7a)+

Theorem (CVaR concentration for sub-Exponential)

Assume (A1). Suppose that X;, i =1,...,n are sub-exponential
with parameters o, b. Then, for all € € (0,9), we have

P”én,a — Cal > €] < 6exp[—nip(e)],

E(1—a)?min (n%,1) (1 - a))
8max(s2,8) ' 8b '

where 1, (e) = min (



Handling Heavy-Tailed distributions

+ Heavy-tailed distributions occur commonly in finance
applications

« Tail of distribution decays slower than any exponential
—characterised by atypically large sample values

« Empirical estimates may be ‘thrown off' due to atypically
large values occurring early in the aggregating process

« Raw empirical estimates do not concentrate well around
true value

2Bubeck et. al., Bandits with Heavy-Tail, |IEEE Trans. Inf. Thy., 2013.



Handling Heavy-Tailed distributions

+ Heavy-tailed distributions occur commonly in finance
applications

« Tail of distribution decays slower than any exponential
—characterised by atypically large sample values

« Empirical estimates may be ‘thrown off' due to atypically
large values occurring early in the aggregating process

« Raw empirical estimates do not concentrate well around
true value

+ Key Idea: Truncated estimator!

- Truncate large values, while slowly growing the truncation
threshold?

2Bubeck et. al., Bandits with Heavy-Tail, |IEEE Trans. Inf. Thy., 2013.




The Bounded (Second) Moment case: Truncated CVaR estimator

Assume (A2) 3 u such that E[X?] < u < oc.



The Bounded (Second) Moment case: Truncated CVaR estimator

Assume (A2) 3 u such that E[X?] < u < oc.

Truncated CVaR Estimator

6”,04 - ﬁ 2?21 Xl {‘A/n,a <X < Bi}r
where B; & Vui.



CVaR Concentration for the Bounded Moment case

Theorem (CVaR concentration: Bounded second moment
case)

Let {X;}7_, be a sequence of i.i.d. rv.s satisfying (A1) and (A2).
Let ¢, o be the truncated CVaR estimate formed using the
above set of samples. For all e > 0,

2.2
Pnen,a—cawe]szexp(— N1 —a)e )

144 (/U + v,
201 — )2 min (. 82
1w (O FE(E0)

where n and § are as defined in (A1).



Bandit application



CVaR-aware bandits: Model

Known # of arms K and horizon n

Unknown Distributions Fp, kR =1,... K,

CVaR-values (at fixed risk level ) : ¢q,Ca, ..., Ck

Interaction Ineachroundt=1,...,n

« pullarm I € {1,...,K}
+ observe a sample loss from F,

Recommendation Arm J,

Benchmark: k* = argmincy.
k=1,....K




CVaR-aware bandits: Model

Known # of arms K and horizon n

Unknown Distributions Fp, kR =1,... K,

CVaR-values (at fixed risk level ) : ¢q,Ca, ..., Ck

Interaction In eachroundt=1,...,n

« pullarm I € {1,...,K}
+ observe a sample loss from F,

Recommendation Arm J,

Benchmark: k* = argmincy.
k=1,....K

Goal: Minimize probability of erroneous recommendation
Pln # k7]



The Successive Rejects Algorithm®

AN A = {1,....K},
g !”'i‘,a“ ) N { 1 n—kK w - One arm played n; times,
\ lzation / T T KLl b
N log(K) K+1—k ..., another played ng_»
“/ \\\ﬁ Play each arm j € Ay, nq times; times
| Phase 1|  SetA, = A;\ argmaxé;,
A e . Two arms played ng_;
v : times
( Phase 2 \ Play each arm j € A,
d n, — nq times; Eliminate ... *M+...+nNk1+nk1 <N
TN, * ng increases with R
([ ] . .
N\ / } - Adaptive exploration:
N . .
N better than uniform (i.e.,
‘;" Phase \‘ Play the remalnmg.two play each arm n/K times)
“\K —1/ arms ng_q — ng_, times

®Audibert et al,, Best Arm Identification in Multi-armed Bandits, COLT 2010



Probability of error for Successive Rejects

+ Suppose the arm distributions are all 1-sub-exponential.

« Given a simulation budget n, the probability that the SR
algorithm identifies a suboptimal arm as being optimal can be
bounded as

P [ # k*] < 3K(K — 1) exp (—%) :

where 3 is a problem dependent constant (indep. of the gaps),

and
kR

H,= max —————
k=1.2,...K Min(Ap, A2, 62)

where §y, is the constant from (A1) for arm k's distribution



Concluding Remarks

« Derived a concentration bound for empirical CvaR, estimator
for sub-Gaussian and sub-exponential rv.s

« Atruncated CVaR estimator to handle heavy-tailed
distributions

- Showed a bandit application for best CVaR,, arm identification,
and derived probability of error for SR algorithm



Thank you!



