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Information Measures

Optimal value function 𝑉∗ and information 
measures have similar shape

→“more information = higher value”

Figure: Shape of optimal value 

function and negative entropy.
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Information Measures

Optimal value function 𝑉∗ and information 
measures have similar shape

→“more information = higher value”

Motivation

Speed up planning 

Allow active information gathering

Figure: Shape of optimal value 

function and negative entropy.
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Figure: Probabilistic graphical model of a   POMDP.

Extension of POMDP framework

4

POMDPs

[1] Araya-López et al., “A POMDP Extension with Belief-dependent Rewards,” (2010)

Belief-dependent reward model
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Figure: Probabilistic graphical model of a   POMDP.

Extension of POMDP framework
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[1] Araya-López et al., “A POMDP Extension with Belief-dependent Rewards,” (2010)

Belief-dependent reward model
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Figure: Probabilistic graphical model of a   POMDP.

Extension of POMDP framework

4

POMDPs

[1] Araya-López et al., “A POMDP Extension with Belief-dependent Rewards,” (2010)

Belief-dependent reward model

Solvers exist only for

Discrete problems

Piecewise linear and convex 

Offline computation 
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Approach - Information Particle Filter Tree

Figure: Simulation phase of IPFT.
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Adapt MCTS-based POMDP solver

Approximate belief by particles

Evaluate on particle sets

5

Approach - Information Particle Filter Tree

→Online anytime algorithm

→Continuous problems

Figure: Simulation phase of IPFT.
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Potential-Based Reward Shaping

Reward shaping changes the optimal policy

[2] Eck et. al. “Potential-based reward shaping for finite horizon online POMDP planning.” (2016)

BUT: Optimal policy is invariant under potential-based reward shaping
for infinite horizon [2]
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Potential-Based Reward Shaping

Reward shaping changes the optimal policy

[2] Eck et. al. “Potential-based reward shaping for finite horizon online POMDP planning.” (2016)

BUT: Optimal policy is invariant under potential-based reward shaping
for infinite horizon [2]

𝑉∗ serves as a particularly effective potential
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Information-Theoretic Reward Shaping

Information measures have similar shape to 𝑉∗

Convex on belief space

→Use as heuristic for 𝑉∗
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Solving   POMDPs in Continuous Domains

Based on Particle Filter Tree (PFT) Algorithm [3]

MCTS → continuous states

Double Progressive Widening (DPW)

→ continuous actions & observations

[3] Sunberg and Kochenderfer, “Online Algorithms for POMDPs with Continuous State, 

Action, and Observation Spaces,” (2018) Figure: Simulation phase of PFT.
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Solving   POMDPs in Continuous Domains

Based on Particle Filter Tree (PFT) Algorithm [3]

MCTS → continuous states

Double Progressive Widening (DPW)

→ continuous actions & observations

Solves belief MDP

Small weighted particle sets

Update with mean particle return

[3] Sunberg and Kochenderfer, “Online Algorithms for POMDPs with Continuous State, 

Action, and Observation Spaces,” (2018) Figure: Simulation phase of PFT.
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Solving   POMDPs in Continuous Domains -
Information Particle Filter Tree (IPFT)

Particle set approximates belief

Figure: Simulation phase of IPFT.
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Solving   POMDPs in Continuous Domains -
Information Particle Filter Tree (IPFT)

Particle set approximates belief

Evaluate on weighted particle sets, e.g.

Figure: Simulation phase of IPFT.
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Solving   POMDPs in Continuous Domains -
Information Particle Filter Tree (IPFT)

Particle set approximates belief

Evaluate on weighted particle sets, e.g.

Particle-based kernel density estimate

Figure: Simulation phase of IPFT.
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Solving   POMDPs in Continuous Domains -
Information Particle Filter Tree (IPFT)

Particle set approximates belief

Evaluate on weighted particle sets, e.g.

Particle-based kernel density estimate

Averaging over many particle sets leads to 
better entropy estimate

Figure: Simulation phase of IPFT.
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Solving   POMDPs in Continuous Domains -
Information Particle Filter Tree (IPFT)

Particle set approximates belief

Evaluate on weighted particle sets, e.g.

Particle-based kernel density estimate

Averaging over many particle sets leads to 
better entropy estimate

→IPFT can solve arbitrary   POMDPs on 
continuous domains

Figure: Simulation phase of IPFT.

Introduction IPFT Experiments ConclusionReward Shaping

ICML, July 2020



Information Particle Filter Tree Algorithm for Continuous POMDPs 10

Experiments – Light Dark

Introduction IPFT Experiments ConclusionReward Shaping

ICML, July 2020



Information Particle Filter Tree Algorithm for Continuous POMDPs 10

Experiments – Light Dark

Goal: execute 𝑎 = 0 at 𝑠 = 0

Consider action spaces

Figure: Light Dark environment.
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Experiments – Light Dark

Goal: execute 𝑎 = 0 at 𝑠 = 0

Consider action spaces

Figure: Light Dark environment.

Figure: Continuous Light Dark environment.

Continuous state space

Transition noise

Increased observation noise
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Results – Light Dark

Table: Mean reward and standard deviation of 1000 simulations.
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Results – Light Dark

Table: Mean reward and standard deviation of 1000 simulations.

Figure: Exemplary trajectories of POMCPOW (left) and IPFT (right) in Continuous Light Dark problem.
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Laser Tag

Figure: Laser Tag problem.
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Laser Tag

Figure: Laser Tag problem.
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Hyperparameter Sensitivity Analysis

Figure: Mean reward and standard deviation of 1000 simulations of the Continuous Light Dark problem for 

different parameters.
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Conclusion
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Conclusion

Information-theoretic reward shaping

→Helps by guiding agent to informative beliefs

Figure: Simulation phase of IPFT.
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Can POMDP solvers be improved by 
considering information?

IPFT combines PFT algorithm with   POMDPs

→General online solver for continuous   POMDPs

How can POMDPs on continuous 
domains be solved online?
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