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Outline
Self-supervised Learning
• What is self-supervised learning?
• Applications of self-supervision
• Motivation: How effectively utilize self-supervision in fully-supervised settings?

Self-supervised Label Augmentation (SLA)
• Observation: Learning invariance to transformations
• Main idea: Eliminating invariance via joint-label classifier
• Aggregation across all transformations  &  Self-distillation from aggregation

Experiments
• Standard fully-supervised / few-shot / imbalance settings
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What is Self-supervised Learning?
Self-supervised learning approaches 
1. Construct artificial labels, i.e., self-supervision, only using the input examples
2. Learn their representations via predicting the labels

Transformation-based self-supervision
1. Apply a transformation                                 into an input          
2. Learn to predict the transformation     from observing only 
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Examples of Self-supervision
• Relative Patch Location Prediction [Doersch et al., 2015]

• Jigsaw Puzzle [Noroozi and Favaro, 2016]
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Permutation

Patch Sampling
Predict patch location

Predict permutation

[Doersch et al., 2015] Unsupervised visual representation learning by context prediction, ICCV 2015
[Noroozi and Favaro, 2016] Unsupervised learning of visual representations by solving jigsaw puzzles, ECCV 2016



Examples of Self-supervision
• Colorization [Larsson et al., 2017]

• Rotation [Gidaris et al., 2018]
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Remove Colors

Rotation

Predict RGB values

Predict rotation degree

[Larsson et al., 2017] Colorization as a proxy task for visual understanding, CVPR 2017
[Gidaris et al., 2018] Unsupervised representation learning by predicting image rotations, ICLR 2018



Applications of Self-supervision
• Simplicity of transformation-based self-supervision encourages its wide applicability

• Semi-supervised learning [Zhai et al., 2019; Berthelot et al., 2020]
• Improving robustness [Hendrycks et al., 2019]
• Training generative adversarial networks [Chen et al., 2019]
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S4L [Zhai et al., 2019] SSGAN [Chen et al., 2019]
[Zhai et al., 2019] S4L: Self-supervised semi-supervised learning
[Berthelot et al., 2020] Remixmatch: Semi-supervised learning with distribution matching and augmentation anchoring, ICLR 2020
[Hendrycks et al., 2019] Using self-supervised learning can improve model robustness and uncertainty, NeurIPS 2019
[Chen et al., 2019] Self-supervised gans via auxiliary rotation loss, CVPR 2019



Applications of Self-supervision
• Simplicity of transformation-based self-supervision encourages its wide applicability

• Semi-supervised learning [Zhai et al., 2019; Berthelot et al., 2020]
• Improving robustness [Hendrycks et al., 2019]
• Training generative adversarial networks [Chen et al., 2019]

• The prior works maintain two separate classifiers for original and self-supervised tasks, 
and optimize their objectives simultaneously
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Applications of Self-supervision
• Simplicity of transformation-based self-supervision encourages its wide applicability

• Semi-supervised learning [Zhai et al., 2019; Berthelot et al., 2020]
• Improving robustness [Hendrycks et al., 2019]
• Training generative adversarial networks [Chen et al., 2019]

• The prior works maintain two separate classifiers for original and self-supervised tasks, 
and optimize their objectives simultaneously
• This approach can be considered as multi-task learning

• This typically provides no accuracy gain when working with fully-labeled datasets
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Q) How can we effectively utilize the self-supervision
for fully-supervised classification tasks?
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Data Augmentation with Transformations
• Notation

• :  Pre-defined transformations, e.g., rotation by 0°, 90°, 180°, 270°
• :  Penultimate feature of the modified input
• :  Softmax classifier with a weight matrix

• Data augmentation (DA) approach can be written as 
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Multi-task Learning with Self-supervision
• Notation

• :  Pre-defined transformations, e.g., rotation by 0°, 90°, 180°, 270°
• :  Penultimate feature of the modified input
• :  Softmax classifier with a weight matrix

• Multi-task learning (MT) approach is formally written as 
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Multi-task Learning with Self-supervision
• Notation

• :  Pre-defined transformations, e.g., rotation by 0°, 90°, 180°, 270°
• :  Penultimate feature of the modified input
• :  Softmax classifier with a weight matrix

• Multi-task learning (MT) approach is formally written as 

13

Dog or Cat ?

0° or 90°?

Original

Self-supervision

This enforces invariance to transformations ⇒ more difficult optimization



Learning Invariance to Transformations

• Transformations for DA ≠ Transformations for SSL
• Learning invariance to SSL transformations degrades performance
• Ablation study:

• We use 4 rotations with degrees of 0°, 90°, 180°, 270° for transformations
• We train Baseline w/o rotation, Data Augmentation (DA), and Multi-task Learning (MT) objectives
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Learning discriminability from transformations  ⇒ Self-supervised learning (SSL)
Learning invariance to transformations                ⇒ Data augmentation (DA)

Baseline:

Data Augmentation:

Multi-task Learning:

Notation



Learning Invariance to Transformations

• Transformations for DA ≠ Transformations for SSL
• Learning invariance to SSL transformations degrades performance
• Ablation study:

• We use 4 rotations with degrees of 0°, 90°, 180°, 270° for transformations
• We train Baseline w/o rotation, Data Augmentation (DA), and Multi-task Learning (MT) objectives
• In CIFAR-10/100, tiny-ImageNet, learning invariance to rotations degrades classification performance
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Learning discriminability from transformations  ⇒ Self-supervised learning (SSL)
Learning invariance to transformations                ⇒ Data augmentation (DA)

Learning invariance to rotations degrades performance!



Learning Invariance to Transformations

• Transformations for DA ≠ Transformations for SSL
• Learning invariance to SSL transformations degrades performance
• Ablation study:

• We use 4 rotations with degrees of 0°, 90°, 180°, 270° for transformations
• We train Baseline w/o rotation, Data Augmentation (DA), and Multi-task Learning (MT) objectives
• In CIFAR-10/100, tiny-ImageNet, learning invariance to rotations degrades classification performance

• Similar findings in the prior work
• AutoAugment [Cubuk et al., 2019] rotates images at most 30 degrees 
• SimCLR [Chen et al., 2020] with rotations (0°, 90°, 180°, 270°) fails to learn meaningful representations
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Learning discriminability from transformations  ⇒ Self-supervised learning (SSL)
Learning invariance to transformations                ⇒ Data augmentation (DA)

[Cubuk et al., 2019] Autoaugment: Learning augmentation strategies from data, CVPR 2019
[Chen et al., 2020] A simple framework for contrastive learning of visual representations, 2020



Idea: Eliminating Invariance via Joint-label Classifier
• Our key idea is to remove the unnecessary invariant property of the classifier

• Construct joint-label distribution of original and self-supervised labels
• Use one joint-label classifier for the joint distribution
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Idea: Eliminating Invariance via Joint-label Classifier
• Our key idea is to remove the unnecessary invariant property of the classifier

• Construct joint-label distribution of original and self-supervised labels

• For example, when considering 4 rotations and CIFAR-10, we have 40 joint-labels

• Use joint-label classifier with a weight tensor         &    joint-label cross-entropy loss

• It is equivalent to the single-label classifier with            labels
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Idea: Eliminating Invariance via Joint-label Classifier
• Our key idea is to remove the unnecessary invariant property of the classifier

• Construct joint-label distribution of original and self-supervised labels

• For example, when considering 4 rotations and CIFAR-10, we have 40 joint-labels

• Use joint-label classifier with a weight tensor         &    joint-label cross-entropy loss

• It is equivalent to the single-label classifier with            labels

• The objective is as follows:
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Comparison between DA, MT, and SLA
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Aggregation across Transformations
• In the test phase, we do not need to consider all            joint-labels

• We make a prediction using the conditional probability 
• denotes Single Inference (SLA+SI)
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Aggregation across Transformations
• For inference, we do not need to consider all            joint-labels

• We make a prediction using the conditional probability 
• denotes Single Inference (SLA+SI)
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Aggregation across Transformations
• For inference, we do not need to consider all            joint-labels

• We make a prediction using the conditional probability 
• denotes Single Inference (SLA+SI)
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Aggregation across Transformations
• For inference, we do not need to consider all            joint-labels

• We make a prediction using the conditional probability 
• denotes Single Inference (SLA+SI)
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Aggregation across Transformations
• For inference, we do not need to consider all            joint-labels

• We make a prediction using the conditional probability 
• denotes Single Inference (SI)

• For all transformations         , we aggregate the corresponding conditional probabilities

• denotes Aggregated Inference (SLA+AG)
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Aggregation across Transformations
• For inference, we do not need to consider all            joint-labels

• We make a prediction using the conditional probability 
• denotes Single Inference (SI)

• For all transformations         , we aggregate the corresponding conditional probabilities 

• denotes Aggregated Inference (SLA+AG)
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Self-distillation from Aggregation
• The aggregation scheme                               improves accuracy significantly

• Note that this requires only a single model, but acts as an ensemble
• Surprisingly, it achieves comparable performance with the ensemble of multiple independent models
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Self-distillation from Aggregation

• We propose a self-distillation scheme for further improvements

• denotes Self-Distillation (SLA+SD)
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Experiments
• Transformations

• Rotation (M=4)

• Color permutation (M=6)

• Classification tasks
• Standard classification: CIFAR-10/100, CUB200, MIT67, Stanford Dogs, tiny-ImageNet
• Few-shot classification: mini-ImageNet, CIFAR-FS, FC100
• Imbalance classification: CIFAR-10/100
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• Self-supervised label augmentation (SLA) improves classification accuracy by large margin

• Using rotation as label augmentation improves classification accuracy on all datasets
• Using color permutation provides meaningful gains on fine-grained datasets
• Our aggregation scheme (SLA+AG) competes with independent ensemble (IE) of multiple models

Standard Classification
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• Self-supervised label augmentation (SLA) improves classification accuracy by large margin

• Using rotation as label augmentation improves classification accuracy on all datasets
• Using color permutation provides meaningful gains on fine-grained datasets
• Our aggregation scheme (SLA+AG) competes with independent ensemble (IE) of multiple models
• Furthermore, our SLA can be combined with existing

augmentation techniques
• Cutout, AutoAugment, CutMix

Standard Classification
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• Few-shot setting

• Imbalanced setting

Various Classification Scenarios
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These show that SLA can be easily
combined with existing approaches
in various classification tasks!



Conclusion
• We consider self-supervision in full-supervised settings for improving classification accuracy

• We propose Self-supervised Label Augmentation (SLA) which augments the label space 
using self-supervised transformations
• We propose additional techniques, aggregation and self-distillation

• We demonstrate the wide applicability and compatibility of SLA in various classification 
scenarios including few-shot and imbalanced settings

• We believe that the simplicity and effectiveness of SLA could bring in many interesting 
directions for future research
• Using aggregation scheme for constructing pseudo labels in semi-supervised learning
• Applying SLA to the contrastive learning frameworks, e.g., SimCLR [Chen et al., 2020]

34[Chen et al., 2020] A simple framework for contrastive learning of visual representations, 2020
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Thank you for listening!

hankook.lee @ kaist.ac.kr


