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Self-supervised Learning
* What is self-supervised learning?
* Applications of self-supervision

* Motivation: How effectively utilize self-supervision in fully-supervised settings?

Self-supervised Label Augmentation (SLA)
* Observation: Learning invariance to transformations
* Main idea: Eliminating invariance via joint-label classifier

» Aggregation across all transformations & Self-distillation from aggregation

Experiments

 Standard fully-supervised / few-shot / imbalance settings



Self-supervised Learning
* What is self-supervised learning?
* Applications of self-supervision

* Motivation: How effectively utilize self-supervision in fully-supervised settings?



What is Self-supervised Learning?

Self-supervised learning approaches

1. Construct artificial labels, i.e., self-supervision, only using the input examples

2. Learn their representations via predicting the labels

Transformation-based self-supervision

1. Apply a transformation ¢ € {t1,...,t)/} into aninput x
2. Learn to predict the transformation ¢ from observing only ¢(x)
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Examples of Self-supervision

* Relative Patch Location Prediction [Doersch et al., 2015]
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[Doersch et al., 2015] Unsupervised visual representation learning by context prediction, ICCV 2015

[Noroozi and Favaro, 2016] Unsupervised learning of visual representations by solving jigsaw puzzles, ECCV 2016 5



Examples of Self-supervision

* Colorization [Larsson et al., 2017]

Predict RGB values
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[Larsson et al., 2017] Colorization as a proxy task for visual understanding, CVPR 2017

[Gidaris et al., 2018] Unsupervised representation learning by predicting image rotations, ICLR 2018 6




Applications of Self-supervision

» Simplicity of transformation-based self-supervision encourages its wide applicability
* Semi-supervised learning [Zhai et al., 2019; Berthelot et al., 2020]

* Improving robustness [Hendrycks et al., 2019]

* Training generative adversarial networks [Chen et al., 2019]
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S4L [Zhai et al., 2019]

[Zhai et al., 2019] S4L: Self-supervised semi-supervised learning

[Berthelot et al., 2020] Remixmatch: Semi-supervised learning with distribution matching and augmentation anchoring, ICLR 2020
[Hendrycks et al., 2019] Using self-supervised learning can improve model robustness and uncertainty, NeurlPS 2019

[Chen et al., 2019] Self-supervised gans via auxiliary rotation loss, CVPR 2019
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Applications of Self-supervision

» Simplicity of transformation-based self-supervision encourages its wide applicability
* Semi-supervised learning [Zhai et al., 2019; Berthelot et al., 2020]
* Improving robustness [Hendrycks et al., 2019]
* Training generative adversarial networks [Chen et al., 2019]

* The prior works maintain two separate classifiers for original and self-supervised tasks,
and optimize their objectives simultaneously

— Original Head Dog or Cat ?
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Applications of Self-supervision

» Simplicity of transformation-based self-supervision encourages its wide applicability

* Semi-supervised learning [Zhai et al., 2019; Berthelot et al., 2020]
* Improving robustness [Hendrycks et al., 2019]
* Training generative adversarial networks [Chen et al., 2019]

* The prior works maintain two separate classifiers for original and self-supervised tasks,

and optimize their objectives simultaneously
* This approach can be considered as multi-task learning

* This typically provides no accuracy gain when working with fully-labeled datasets

m

Q) How can we effectively utilize the self-supervision
for fully-supervised classification tasks?




Self-supervised Label Augmentation (SLA)
* Observation: Learning invariance to transformations
* Main idea: Eliminating invariance via joint-label classifier

» Aggregation across all transformations & Self-distillation from aggregation
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Data Augmentation with Transformations

* Notation
e {t1,...,tpm}: Pre-defined transformations, e.g., rotation by 0°, 90°, 180°, 270°
» z; = fp(t;(x)): Penultimate feature of the modified input X; = t,(x)
 0i(z;u) = exp(u; z)/ >, exp(u] z): Softmax classifier with a weight matrix u

* Data augmentation (DA) approach can be written as
r Not depending on t;

Lpa(x,y) Z»CCE o(z;;u),y)

Original Dog or Cat ?
fo 2, (0w JsLon(o(a: ), y)
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Multi-task Learning with Self-supervision

* Notation
e {t1,...,tpm}: Pre-defined transformations, e.g., rotation by 0°, 90°, 180°, 270°
» z; = fp(t;(x)): Penultimate feature of the modified input X; = t,(x)
 0i(z;u) = exp(u; z)/ >, exp(u] z): Softmax classifier with a weight matrix u

e Multi-task learning (MT) approach is formally written as
r Depending on ?;
J)

Ly (X, y) Z»CCE o(zj;u), y) + Lov(o(z;;v),
Original Dog or Cat ?
g fo N Lo o(zj;u) |- +Lcg(o(z55u), y)
: L y I Self-supervision 0° or 90°?
| 0(Zj;V) - >Lcr(0(z4;v), 7)




Multi-task Learning with Self-supervision

* Notation
e {t1,...,tpm}: Pre-defined transformations, e.g., rotation by 0°, 90°, 180°, 270°
» z; = fp(t;(x)): Penultimate feature of the modified input X; = t,(x)
 0i(z;u) = exp(u; z)/ >, exp(u] z): Softmax classifier with a weight matrix u

* Multi-task learning (MT) approach is formally written as
M This enforces invariance to transformations = more difficult optimization

Lur(x,y) = 37 ) jLop(0(z531), y)it Low(o(2;;v), j)
=1
’ [o===mm-mmmmmmmmmmmoo- -Original----—-----—-- Dogeor-Cat -----
" (o) J—Lop(o(z;;n), v)
: i L E Self-supervision 0° or 90°?
1 Yl oa(zv) f > Lce(o(2Z5;v), 7)




Learning Invariance to Transformations

Learning discriminability from transformations = Self-supervised learning (SSL)
Learning invariance to transformations = Data augmentation (DA)

* Transformations for DA # Transformations for SSL
* Learning invariance to SSL transformations degrades performance

* Ablation study:
« We use 4 rotations with degrees of 0°, 90°, 180°, 270° for transformations {t1, ...t}
* We train Baseline w/o rotation, Data Augmentation (DA), and Multi-task Learning (MT) objectives

Notation
Baseline: LBaseline(X,y) = Lcog(o(z;U), y) z = fo(x), z; = fo(t;(x)),
T
- 9 M . O'i(Z; U) _ exp(u, z_r)
Data Augmentation:  Lpa(X,y) = 37 >_i—1 Lcr(o(z5;U), y) S, exp(u) z)

Multi-task Learning: Ly (X, y) = % Z;\il ECE(U(ZJ'Q U)7 y) T ECE(U(zﬁ V)> ])
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Learning Invariance to Transformations

Learning discriminability from transformations = Self-supervised learning (SSL)
Learning invariance to transformations = Data augmentation (DA)

* Transformations for DA # Transformations for SSL
* Learning invariance to SSL transformations degrades performance

* Ablation study:
« We use 4 rotations with degrees of 0°, 90°, 180°, 270° for transformations {t1, ...t}
* We train Baseline w/o rotation, Data Augmentation (DA), and Multi-task Learning (MT) objectives
* In CIFAR-10/100, tiny-ImageNet, learning invariance to rotations degrades classification performance

Dataset Baseline DA MT

CIFARI10 92.39 19044 90.791
CIFAR100 6827 16573 66.10

tiny-ImageNet ~ 63.11 160.21  58.04 !

Learning invariance to rotations degrades performance!
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Learning Invariance to Transformations

Learning discriminability from transformations = Self-supervised learning (SSL)
Learning invariance to transformations = Data augmentation (DA)

* Transformations for DA # Transformations for SSL
* Learning invariance to SSL transformations degrades performance

* Ablation study:
« We use 4 rotations with degrees of 0°, 90°, 180°, 270° for transformations {t1, ...t}
* We train Baseline w/o rotation, Data Augmentation (DA), and Multi-task Learning (MT) objectives
* In CIFAR-10/100, tiny-ImageNet, learning invariance to rotations degrades classification performance

 Similar findings in the prior work
* AutoAugment [Cubuk et al., 2019] rotates images at most 30 degrees
* SimCLR [Chen et al., 2020] with rotations (0°, 90°, 180°, 270°) fails to learn meaningful representations

[Cubuk et al., 2019] Autoaugment: Learning augmentation strategies from data, CVPR 2019
[Chen et al., 2020] A simple framework for contrastive learning of visual representations, 2020 16



Idea: Eliminating Invariance via Joint-label Classifier

* Our key idea is to remove the unnecessary invariant property of the classifier
* Construct joint-label distribution of original and self-supervised labels
* Use one joint-label classifier for the joint distribution

4 ™) (Dog, 0°),
(Dog, 90°),
—| Joint-label Head (Cat, 0°), or
\_ ) (Cat, 90°)?
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Idea: Eliminating Invariance via Joint-label Classifier

* Our key idea is to remove the unnecessary invariant property of the classifier
* Construct joint-label distribution of original and self-supervised labels

c{l,2,...,N Original labels :
Vel booone > () € {11, (1L,2),.., (N, M)}
je{l,2,...,M} Self-supervised labels

* For example, when considering 4 rotations and CIFAR-10, we have 40 joint-labels

* Use joint-label classifier with a weight tensor w & joint-label cross-entropy loss
exp(WiTji)

— =N M -
Zkzl Zz=1 eXp(WlIlZ)

* Itis equivalent to the single-label classifier with N A/ labels

Lcr(p(z;w), (y,7)) = —log py;(z; w)

pi;(Z; W)

Jo 3 (Dog, 0°), (Dog, 90°),
(- ) Joint-label (Cat, 0°), or (Cat, 90°)?

—> (25 W) J-» Low(plz:w), (.9))
\_ J
Self-supervised Label Augmentation (SLA) 18




Idea: Eliminating Invariance via Joint-label Classifier

* Our key idea is to remove the unnecessary invariant property of the classifier
* Construct joint-label distribution of original and self-supervised labels

c{l,2,...,N Original labels :
Vel booone > () € {11, (1L,2),.., (N, M)}
je{l,2,...,M} Self-supervised labels

* For example, when considering 4 rotations and CIFAR-10, we have 40 joint-labels

* Use joint-label classifier with a weight tensor w & joint-label cross-entropy loss
T~
_ exp(w,,;z) - : ~
pij(Z;W) = N Vi ] . ‘CCE(IO(Z;W)a (yaj)) — —logpyj(z;w)
D k=1 21=1 €XP(Wy,2)

* Itis equivalent to the single-label classifier with N A/ labels

* The objective is as follows:

»CSLA X y Z»CCE Zj? ) (y j))

19



Comparison between DA, MT, and SLA

Data Augmentation (DA)

Original
0(z;;u)

Original

o(zj;u)

Self-supervision

0(Zj;V)

Joint-label

p(zj; W)

{ Cat, Dog }

{ Cat, Dog }
Multi-task Learning (MT)

{0°, 90°, 180°, 270° }

(Cat, 0°), (Cat, 90°), ...,
(Dog, 180°), (Dog, 270°)

Self-supervised Label Augmentation (SLA, ours) 20



Aggregation across Transformations

* In the test phase, we do not need to consider all N M joint-labels
* We make a prediction using the conditional probability P(i|x;,j) = eXp(w

* P(i|x;,7 = 1) denotes Single Inference (SLA+SI)
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Aggregation across Transformations

* For inference, we do not need to consider all N M joint-labels

* We make a prediction using the conditional probability P(i|x;,j) = eXp(w
* P(i|x;,7 = 1) denotes Single Inference (SLA+SI)
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Aggregation across Transformations

* For inference, we do not need to consider all N M joint-labels
* We make a prediction using the conditional probability P(i|x;,j) = eXp(w

)/Zk 1eXP(Wk3ZJ)
* P(i|x;,7 = 1) denotes Single Inference (SLA+SI)
[ 5 ]

2 & 2 |N

# ) Joint-label 05
p(z;; W)

.05 90

g J

Cat

Dog

23



Aggregation across Transformations

* For inference, we do not need to consider all N M joint-labels

* We make a prediction using the conditional probability P(i|x;,j) = eXp(w

* P(i|x;,7 = 1) denotes Single Inference (SLA+SI)

)/Zk 1 eXP(WngJ)
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Aggregation across Transformations

* For inference, we do not need to consider all N M joint-labels
* We make a prediction using the conditional probability P(i|x;,j) = exp(w i)/ Zk . exp(wkaj)
* P(i|x;,7 = 1) denotes Single Inference (SI)

* For all transformations {t; }, we aggregate the corresponding conditional probabilities

exp(si) 1M T
Paggregated( ‘X) ZN exp(sp) where S; = M Zj:l WijZJ

o Pageregated (/%) denotes Aggregated Inference (SLA+AG)

(Dog, 0°)
-
(Dog, 90°)
> Aggregated Score
(Dog, 180°)
-
(Dog, 270°)
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Aggregation across Transformations

* For inference, we do not need to consider all N M joint-labels

* We make a prediction using the conditional probability P(i|X;, j) = exp(w,;z;)/ Zk . exp(wkaj)
* P(i|x;,7 = 1) denotes Single Inference (SI)

* For all transformations {t ; }, we aggregate the corresponding conditional probabilities

exp(si) . T~

e Paggregated (¢/X) denotes Aggregated Inference (SLA+AG)

1 T5
M 7 szZ]

-
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Self-distillation from Aggregation

* The aggregation scheme Pjggregated (¢|X) improves accuracy significantly
* Note that this requires only a single model, but acts as an ensemble
* Surprisingly, it achieves comparable performance with the ensemble of multiple independent models

(Dog, 0°)
-
(Dog, 90°)
Aggregated Score
g (Dog, 180°)
(Dog, 270°)
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Self-distillation from Aggregation

(Dog, 0°)
( )
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* We propose a self-distillation scheme for further improvements
»CSLA—|—SD (X, y) — *CSLA (X, y) + DKL(Paggregated ”O-(Z; U)) + ‘CCE(U(Z; u)a y)

Aggregated Score

Self-distillation

- 0(2; 1) denotes Self-Distillation (SLA+SD)

Distillation term

Classification term
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Experiments

 Standard fully-supervised / few-shot / imbalance settings
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* Transformations

* Classification tasks
 Standard classification: CIFAR-10/100, CUB200, MIT67, Stanford Dogs, tiny-ImageNet

* Few-shot classification: mini-ImageNet, CIFAR-FS, FC100

* Imbalance classification: CIFAR-10/100
30



Standard Classification

 Self-supervised label augmentation (SLA) improves classification accuracy by large margin

Rotation Color Permutation
Dataset Baseline SLA+SD SLA+AG SLA+SD SLA+AG
CIFARI0 9239  193.26 (+0.94%) 94.50 (+2. §§<%)'. 91.51 (-0.95%) 92.51 (+0.13%)
CIFARI100 68.27 : 71.85 (+5.24%) 74.14 (+8. 60%) . 6_8_3_3_@9_0_9170_)__92_14_1Ltl_y_‘?_o_
CUB200 54.24 I 62.54 (+153%) 64.41 (+18.8%)! I : 1 60.95 (+12.4%) 61.10 (+12.6%) |
MIT67 54.75 : 63.54 (+16.1%) 64.85 (+18. 4%) 1 | 60.03 (+9.64%) 59.99 (+9.57%) ! I

Stanford Dogs 60.62 : 66.55 (+9.78%)  68.70 (+13.3%) : 1 65.92 (+8.74%)  67.03 (+10. 6%) |

tiny-ImageNet 63.11  165.53 (+3.83%)  66.95 (+6.08%)1 63.98 (+1.38%)  64.15 (+1.65%)

* Using rotation as label augmentation improves classification accuracy on all datasets
* Using color permutation provides meaningful gains on fine-grained datasets
e QOur aggregation scheme (SLA+AG) competes with independent ensemble (IE) of multiple models

Single Model 4 Models
Dataset Baseline |ST:A:-A-G---TI§-—' IE + SLA+AG
CIFAR10 9239 1 9450 9436 I 95.10
CIFAR100 6827 1 7414 7482 | 76.40
tiny-ImageNet ~ 63.11 | 66.95  68.18 ! 69.01

31



Standard Classification

 Self-supervised label augmentation (SLA) improves classification accuracy by large margin

Rotation

Color Permutation

SLA+SD

SLA+AG

SLA+SD

SLA+AG

Dataset Baseline
CIFARI10 92.39
CIFAR100 68.27
CUB200 54.24
MIT67 54.75
Stanford Dogs 60.62
tiny-ImageNet 63.11

93.26 (+0.94%)
71.85 (+5.24%)
62.54 (+15.3%)
63.54 (+16.1%)
66.55 (+9.78%)
65.53 (+3.83%)

94.50 (+2.28%)
74.14 (+8.60%)
64.41 (+18.8%)
64.85 (+18.4%)
68.70 (+13.3%)
66.95 (+6.08%)

91.51 (-0.95%)
68.33 (+0.09%)
60.95 (+12.4%)
60.03 (+9.64%)
65.92 (+8.74%)
63.98 (+1.38%)

92.51 (+0.13%)
69.14 (+1.27%)
61.10 (+12.6%)
59.99 (+9.57%)
67.03 (+10.6%)
64.15 (+1.65%)

Using rotation as label augmentation improves classification accuracy on all datasets
Using color permutation provides meaningful gains on fine-grained datasets
Our aggregation scheme (SLA+AG) competes with independent ensemble (IE) of multiple models

Furthermore, our SLA can be combined with existing

augmentation techniques

Cutout, AutoAugment, CutMix

CIFARI0O CIFARI100

WRN-40-2 5.24 25.63
+ Cutout 4.33 23.87
+ Cutout + SLA+SD (owrs) _ ____ __ 336 ____ 20.42_
1+ AutoAugment 3.70 214471
v£ AutoAugment + SLA+SD (ours) 295 __ _ 18.87 |
PyramidNet200 3.85 16.45
+Mixup ____________ 3.0 ____15.63_
1+ CutMix 2.88 14.47 1
vt CutMix + SLA4SD (ours) 180 ___ 12.24 1

32



Various Classification Scenarios

* Few-shot setting

mini-ImageNet CIFAR-FS FC100
Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
MAML' (Finn et al., 2017) 48.70+184  63.11+092 589+19 71.5+10 - -
R2D2' (Bertinetto et al., 2019) - - 65.3+02  79.4x01 - -
RelationNet' (Sung et al., 2018) 50.44+082 65.32+070 55.0+10 69.3+08 - -
SNAIL (Mishra et al., 2018) 55714099  68.88+0.92 - - - -
TADAM (Oreshkin et al., 2018) 58.50+030  76.70+0.30 - - 40.1+04 56.1+04
LEO* (Rusu et al., 2019) 61.76£008  77.59+0.12 - - - -
MetaOptNet-SVM (Lee et al., 2019)  62.64+061  78.63+046  72.0+07 84.2+05 41.1+06 55.5+06

ProtoNet (Snell et al., 2017) 59.25+064  75.60+048 72.2+07 83.5+05 37.5+06 52.5+06
ProtoNet + SLA+AG (ours) 62.22+069 77.78+051 74.6+07 86.8+05 40.0+06 55.7+06

MetaOptNet-RR (Lee et al., 2019) 61.41+061  77.88+046 72.6+07 84.3+05 40.5+06 55.3+06
MetaOptNet-RR + SLA+AG (ours)  62.93+063  79.63+047 73.5+07 86.7+05 42.2+06 59.2+05

* Imbalanced setting

Imbalanced CIFARI10 Imbalanced CIFAR100
Imbalance Ratio (Nyax /Nmin) 100 10 100 10
Baseline 70.36 86.39 38.32 55.70
Baseline + SLA+SD (ours)  74.61 (+6.04%)  89.55 (+3.66%) 43.42 (+13.3%)  60.79 (+9.14%)
M "CB-RW (Cui et al.. 2019) 7237 36,54 33.99 712 These show that SLA can be easily
| CBRW+SLAYSD (ury)  77.02(+643%)  $9.504342%) 3730 (+103%) 6100 G679% | combined with existing approaches
|  LDAM-DRW (Cao et al., 2019) 77.03 88.16 42.04 58.71 . . lassificati ks!
| LDAM-DRW +SLA+SD (ours) ~ 80.24 (+4.17%) _ 89.58 (+1.61%) 4553 (+8.30%) 59.89 (+1.67%) } 1N Various classification tasks: 23



Conclusion

* We consider self-supervision in full-supervised settings for improving classification accuracy

* We propose Self-supervised Label Augmentation (SLA) which augments the label space
using self-supervised transformations

* We propose additional techniques, aggregation and self-distillation

* We demonstrate the wide applicability and compatibility of SLA in various classification
scenarios including few-shot and imbalanced settings

* We believe that the simplicity and effectiveness of SLA could bring in many interesting
directions for future research

* Using aggregation scheme for constructing pseudo labels in semi-supervised learning
* Applying SLA to the contrastive learning frameworks, e.g., SImCLR [Chen et al., 2020]

[Chen et al., 2020] A simple framework for contrastive learning of visual representations, 2020 34



Thank you for listening!
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