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1. Motivation

Deep models have made great progress in learning large dataset,
however, statistical models could do better in smaller ones. Also,
statistical models usually show better interpretability.

I Linear model.
I Linear assumption is too restricted.
I The non-linear fact in applications.

I Generalized additive model.
I Nonparametric extensions of linear models.
I Flexible and adaptive to high dimensional data.

I Univariate smooth component function.
I Pre-defined group structure information.
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2. Contribution

I Propose a uniform framework to bridge sparse feature
selection, sparse sample selection, and feature interaction
structure learning tasks.

I Provided Generalization bound on the excess risk under mild
conditions, which implies the fast convergence rate can be
achieved.

I Derived the necessary and sufficient condition to characterize
the sparsity of SSAM.
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3. Algorithm: Sparse Shrunk Additive Models

I Let X ⊂ Rn be a explanatory feature space and let Y ⊂ [−1, 1] be
the response set. Let z := {zi}mi=1 = {(xi , yi )}mi=1 be independent
copies of a random sample (x , y) following an unknown intrinsic
distribution ρ on Z := X × Y.

I For any given 1 ≤ k ≤ n and {1, 2, ..., n}, we denote d =
(
n
k

)
as the

number of index subset with k elements. Let x (j) ∈ Rk be a subset
of x with k features and denote its corresponding space as X (j).

I Let K (j) : X (j) ×X (j) → R be a continuous function satisfying
‖K (j)‖∞ < +∞.

I For any given z, we define the data dependent hypothesis space as:

Hz = {f : f (x) =
∑d

j=1 f
(j)(x (j)), f (j) ∈ H(j)

z }, where

H(j)
z = {f (j) =

∑m
i=1 α

(j)
i K (j)(x

(j)
i , ·) : α

(j)
i ∈ R}

I Denote ‖f (j)‖`1 = inf
{∑m

t=1 |α
(j)
t | : f (j) =

∑m
t=1 α

(j)
t K (j)(x

(j)
t , ·)

}
,

and ‖f ‖`1 :=
∑d

j=1 ‖f (j)‖`1 for f =
∑d

j=1 f
(j).
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3. Algorithm: Sparse Shrunk Additive Models

Predictor of SSAM

fz =
d∑

j=1

f
(j)
z =

d∑
j=1

m∑
t=1

α̂
(j)
t K (j)(x

(j)
t , ·)

where, for 1 ≤ t ≤ m and 1 ≤ j ≤ d ,

{α̂(j)
t } = argmin

α
(j)
t ∈R,t,j

{
λ

d∑
j=1

m∑
t=1

|α(j)
t |

+
1

m

m∑
i=1

(
yi −

d∑
j=1

m∑
t=1

α
(j)
t K (j)(x

(j)
t , x

(j)
i )
)2

+
}
.

(1)



3. Algorithm: Sparse Shrunk Additive Models

SSAM from the viewpoint of function approximation

fz = argmin
f ∈Hz

{ 1

m

m∑
i=1

(yi − f (xi ))2 + λ‖f ‖`1
}
.



4. Theoretical Analysis: Assumptions

Assumption 1:

Assume that fρ =
∑d

j=1 f
(j)
ρ , where for each j ∈ {1, 2, ..., d},

f
(j)
ρ : X (j) → R is a function of the form f

(j)
ρ = Lr

K̃ (j)(g
(j)
ρ ) with

some r > 0 and g
(j)
ρ ∈ L2ρX (j)

.

Assumption 2:

For each j ∈ {1, 2, ..., d}, the kernel function
K (j) : X (j) ×X (j) → R is Cs with some s > 0 satisfying:

‖K (j)(u, v)− K (j)(u, v ′)‖ ≤ cs‖v − v ′‖s2, ∀u, v , v ′ ∈ X (j)

for some positive constant cs .



4. Theoretical Analysis: Theorems

Theorem 1
Let Assumptions 1 and 2 be true. For any 0 < δ < 1, with
confidence 1− δ, there exists positive constant c̃1 independent of
m, δ such that:
(1) If r ∈ (0, 12) in Assumption 1, setting λ = m−θ1 with
θ1 ∈ (0, 2

2+p ),

E(π(fz))− E(fρ) ≤ c̃1 log(8/δ)m−γ1 ,

where γ1 = min
{

2rθ1,
1−θ1+2rθ1

2 , 2
2+p − (2− 2r)θ1,

2(1−pθ1)
2+p

}
.

(2) If r ≥ 1
2 in Assumption 1, taking λ = m−θ2 with some

θ2 ∈ (0, 2
2+p ),

E(π(fz))− E(fρ) ≤ c̃1 log(8/δ)m−γ2 ,

where γ2 = min
{
θ2,

1
2 ,

2
2+p − θ2

}
.



4. Theoretical Analysis: Remark

I Theorem 1 provides the upper bound of generalization error to
SSAM with Lipshitz continuous kernel.

I For r ∈ (0, 12), as s →∞, we have
γ1 → min{2rθ1, 12 + (r − 1

2)θ, 1− 2θ1 + 2rθ1}.
I When r → 1

2 and θ1 → 1
2 , the convergence rate O(m−

1
2 ) can

be reached.

I For r ≥ 1
2 , taking θ2 = 1

2+p , we get the convergence rate

O(m−
1

2+p ).



4. Theoretical Analysis: Theorems

Theorem 2
Assume that f

(j)
ρ ∈ H(j) for each 1 ≤ j ≤ d . Take λ = m−

2
2+3p in

(1). For any 0 < δ < 1, with confidence 1− δ we have

E(π(fz))− E(fρ) ≤ c̃2 log(1/δ)m−
2

2+3p ,

where c̃2 is a positive constant independent of m, δ.

I The result is about a special case when f
(j)
ρ ∈ H(j).

I Under the strong condition on fρ, the convergence rate can be
arbitrary close to O(m−1) as s →∞.
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5. Empirical Evaluation: Synthetic Data Setting

I Pairwise interaction setting: k = 2, d =
(n
2

)
.

I Each kernel on X (j) is generated from Gaussian kernel.

I Generate Data. We generate the n-dimensional input

xi = (xi1, xi2, ..., xin)T with xij =
Wij+ηUi

1+η and n = 10, where
W and U are sampled from independent uniform distributions
defined in [−0.5, 0.5].

I Feature selection criterion. We make feature selection

according to the magnitude of
100∑
t=1

α̂
(j)
t for j ∈ {1, ..., 45}.

I Performance measure. The Precision@τ describes the number
of truly informative features in the top-τ selected results.
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5. Empirical Evaluation: Synthetic Data Result



5. Empirical Evaluation: Real Data Results

Table: Average MSE on real-world benchmark data.

SSAM SALSA COSSO SpAM Lasso

Insulin 1.0146 1.0206 1.1379 1.2035 1.1103

Skillcraft 0.5432 0.5470 0.5551 0.90545 0.6650

Airfoil 0.4866 0.5176 0.5178 0.9623 0.5199

Forestfire 0.3477 0.3530 0.3753 0.9694 0.5193

Housing 0.3787 0.2642 1.3097 0.8165 0.4452

CCPP 0.0694 0.0678 0.9684 0.0647 0.0740

Music 0.6295 0.6251 0.7982 0.7683 0.6349

Telemonit 0.0689 0.0347 5.7192 0.8643 0.0863



6. Discussion

I Computational complexity. It could be reduced by introducing
distributed strategy as our future work.

I To prove the feature selection consistency.
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