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Discrete choice models

Goal

Model human choices

Given a set of items, produce probability distribution

Multinomial logit (MNL) model (McFadden, 1974)

Choice set

Utility 2 3 2 1 1

↓ softmax

Choice prob. 0.18 0.50 0.18 0.07 0.07

Pr(choose x from choice set C ) =
exp(ux)∑
y∈C exp(uy )
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The choice set influences preferences

e.g., preference for red fruit:

choice set 1

4 1

choice set 2

2 1 2

Not expressible with MNL

Context effects are common
(Huber et al., 1982; Simonson & Tversky, 1992; Shafir et al., 1993; Trueblood et al., 2013)
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Our contributions

Central algorithmic question

How can we influence the preferences of a group of decision-makers by
introducing new alternatives?

1 Objectives: optimize agreement, promote an item
Choice models: MNL, context effect models (NL, CDM, EBA)

2 Optimizing agreement is NP-hard in all models (two people!)

3 Promoting an item is NP-hard with context effects

4 Restrictions can make promotion easy but leave agreement hard

5 Poly-time ε-additive approximation for small groups

6 Fast MIBLP for MNL agreement in larger groups

∗

∗See paper
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Three models accounting for context effects

Nested logit (NL) (McFadden, 1978)

Context-dependent random utility model (CDM) (Seshadri et al., 2019)

Elimination-by-aspects (EBA) (Tversky, 1972)
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Outline

1 Overview

2 Agreement, Disagreement, and Promotion

3 Hardness Results

4 Approximation Algorithm

5 Experimental Results
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Problem setup

A

U
C C Z

set of individuals making choices A

universe of items U
initial choice set C ⊆ U
possible new alternatives C = U \ C
set of alternatives Z ⊆ C we add to C

choice probabilities Pr(a← x | C ∪ Z ) for each person a and item x

Choice set optimization

Find Z ⊆ C that optimizes some function of Pr(a← x | C ∪ Z )
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Three choice set optimization problems

Disagreement induced by Z

D(Z ) =
∑
{a,b}⊆A
x∈C

|Pr(a← x | C ∪ Z )− Pr(b ← x | C ∪ Z )|

Agreement

Find Z that minimizes D(Z )

Disagreement

Find Z that maximizes D(Z )

Promotion

Find Z that maximizes number of people whose favorite item in C is x∗
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Making even two people agree (or disagree) is hard

Theorem

MNL Agreement is NP-hard, even when |A| = 2 and the two
individuals have identical utilities on items in C.

Theorem

MNL Disagreement is similarly NP-hard.

Corollary

NL, CDM, and EBA Agreement/Disagreement are NP-hard.

Subset Sum
reductions

Agreement

0 1 2
sZ/t

0.16

0.18

0.20

0.22

D
(Z

)

Disagreement

0 1 2 3 4 5
sZ/t

0.0
0.1
0.2
0.3
0.4

D
(Z

)
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Promoting an item is hard (with context effects)

Promotion is impossible with MNL

MNL preserves relative preferences across choice sets.

Theorem

Promotion is NP-hard under NL, CDM, and EBA.

a’s root

y r

x∗ z1 . . . zn

0 log 2

log(t + ε)
log z1

log zn

b’s root

x∗ r

y z1 . . . zn

0 log 2

log(t − ε)
log z1

log zn

Promotion is “easier” than Agreement

Model restrictions make Promotion easy, but leave Agreement hard.
e.g., same-tree NL
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Poly-time approximation for small group Agreement

Idea (inspired by Subset Sum FPTAS from CLRS)

Discretize possible utility sums of Z s

⇒ compute fewer sets than brute-force

Theorem

We can ε-additively approximate MNL Agreement in time
O(poly( 1

ε , |C |, |C |)).

∅ { }

{ , }{ }

a

b

c

can be adapted for
CDM, NL,
Disagreement,
Promotion
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Datasets and training procedure

SFWork: survey of San Fransisco transportation choices
Groups: live in city center, live in suburbs
(Koppelman & Bhat, 2006)

Allstate: online insurance policy shopping
Groups: homeowners, non-homeowners
(Kaggle, 2014)

Yoochoose: online retail shopping
Groups: first half, second half (by timestamp)
(Ben-Shimon et al., 2015)

Model training

Optimize NLL using PyTorch’s Adam with amsgrad fix
(Kingma & Ba, 2015; Reddi et al., 2018; Paszke et al., 2019)
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(Ben-Shimon et al., 2015)

Model training

Optimize NLL using PyTorch’s Adam with amsgrad fix
(Kingma & Ba, 2015; Reddi et al., 2018; Paszke et al., 2019)
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Greedy algorithm fails in small examples

SFWork CDM Agreement

C = {drive alone, transit}

Greedy
Z = {carpool}

Optimal
Z = {bike, walk}
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Approximation outperforms greedy on 2-item choice sets

Allstate
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Approximation outperforms theoretical guarantee

Allstate CDM Promotion on all 2-item choice sets
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Takeaways

1 Influence group preferences
by modifying the choice set

2 NP-hard to maximize
consensus or promote items

3 Promotion is easier than
achieving consensus

4 Approximation algorithm
that works well in practice

Availability

Data and source code hosted at
https://github.com/

tomlinsonk/choice-set-opt.
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