An Imitation Learning Approach ‘-
for Cache Replacement

Evan Z. Liu, Milad Hashemi, Kevin Swgisky;,
Parthasarathy Ranganathan, JunwhafmTAhn

Google Research

The Need for Faster Compute

Petaflop/s-days
4

o Small cache improvements can make large
differences! (Beckman, 2019)
L+ 717 0ot 11 e E.g. 1% cache hit rate improvement — 35%
decrease in latency (Cidon, et. al., 2016)
oo Caches are everywhere:
e CPU chips
- e Operating Systems
o e Databases
e Web applications
Our goal: Faster applications via better cache
replacement policies

(https://openai.com/bloa/ai-and-compute/)

Google Research

https://openai.com/blog/ai-and-compute/

TL;DR:

l. We approximate the optimal cache replacement policy by
(implicitly) predicting the future

ll. Caching is an attractive benchmark for the general
reinforcement learning / imitation learning communities

Google Research

Cache Replacement

Evict
— |
Cache [[A || B || C | AllB|lD Al B|[D
P |
TMiss Hit (100x faster) TMiss
Accesses . A -
>
t=20 t=1 t =2

Goal: Evict the cache lines to maximize cache hits Google Research

Cache Replacement

Cache

Accesses

Evict

C

Mistake

TMiss

Google Research

Cache Replacement

Cache A B C A B D

Accesses D A .

Google Research

Cache Replacement

Reuse distance d (line): number of accesses from access t until the line is reused
d, (A =1,d,(B)>2d(C) =
2

Cache A B C

Accesses A -

Optimal Policy (Belady’s): Evict the line with the greatest reuse Google Research
distance (Belady, 1966)

Belady’s Requires Future Information

Reuse distance d (line): number of accesses from access t until the line is
reused

Problem: Computing reuse distance requires knowing the future
So in practice, we use heuristics, e.g.:

e |east-recently used (LRU)

e Most-recently used (MRU)

... but these perform poorly on complex access patterns

Google Research

Leveraging Belady’s

Idea: approximate Belady’s from past accesses

Training
Predicted decision » Optimal decision

f f

. 1
. s =8

/\
a8 08 @

Past accesses Current Future
access accesses Google Research

Prior Work

. . Evict line X
Trained on > Current line cache

Belady’s friendly or averse? T

-/\-

/\

on dn B Ess

Past Current Current
accesses access cache state

Current state-of-the-art
(Shi et. al., 19, Jain et. al., ‘18)

Google Research

Prior Work

.) Evict line X
Trained on > Current line cache

Belady’s friendly or averse? T

-/\-

/\

on dn B Ess

Past Current Current
accesses access cache state

Current state-of-the-art
(Shi et. al., 19, Jain et. al., ‘18)

+ binary classification is relatively
easy to learn

- traditional algorithm can’t
express optimal policy

Google Research

Evict line X

Trained on > Current line cache
Belady’s friendly or averse? T

/
-\-

/\

Trained on Evict Iine X

-

Past Current Current Past Current Current
accesses access cache state accesses access cache state
Current state-of-the-art Our proposal

(Shi et. al., “19, Jain et. al., “18)
Google Research

Cache Replacement Markov Decision Process

Evict
—
Cache [[A || B || C | AllB|lD Al B|[D
- =
TMiss Hit TMiss
Accesses . A -
>
t=20 t=1 t =2

Google Research
Similar to Wang, et. al., 2019

Cache Replacement Markov Decision Process

Current cache
contents

A B D

Past accesses Current access

S tate S 2 Google Research

Similar to Wang, et. al., 2019

Cache Replacement Markov Decision Process

Actions A = replace A, B, or C no actions replace A, B, or D
A B C A B D A B D
T Miss Hit T Miss

Google Research
Similar to Wang, et. al., 2019

Cache Replacement Markov Decision Process

Reward R Miss Hit Miss
To — r1T — 1 ro —

Google Research
Similar to Wang, et. al., 2019

Leveraging the Optimal Policy

Typical imitation learning setting
(Pomerlau, 1991, Ross, et. al., 2011, Kim, et. al., 2013)

optimal action
a* = argmax, 7 (a | s)

\/

Learned policy
n(a| s)

v

maximize, log 7 (a* | s)

state s

Observation: Not all errors are equally bad
e Learning from optimal policy yields
greater training signal

state s;

/

T~

Learned policy

¥ (line | s;)

Approximate optimal policy
7* (line | s¢) o< exp dy(line)

N——

optimize, e.g., Dy, (7% (line | s;)||7* (line | s¢))

Concretely: minimize a ranking loss £

rank

Google Research

Reuse Distance as an Auxiliary Task

Observation: predicting reuse distance is correlated with cache replacement
Cast this as an auxiliary task (Jaderberg, et. al., 2016)

Loss

‘C rank (0)

> e | 1og d (line) — log d; (line)| |

Policy
! (a: | 8¢)

\/

State
embedding

State S,

Reuse distance
d? (line)

Google Research

Results

Optimal cache-hit rate

[

= 1

N 1.0 A :

2 |

I 0.8 1

) i

£ |

S 0.6 1 |

it 1

B 0.4 i _

N : 3 Glider

E 0.2 | EEl Ours

s | Bl Oracle

2 0.0 1 =
omnetpp Ibm mcf libq bwaves cactusadm sphinx3 gems milc leslie3d Web Search

LRU cache-hit rate

~19% cache-hit rate increase over Glider (Shi, et. al., 2019) on memory-intensive SPEC2006
applications (Jaleel, et. al., 2009)

Google Research
~64% cache-hit rate increase over LRU on Google Web Search

A Note on Practicality

This work: Establish a proof-of-concept

Per-byte address embedding
e Reduce embedding size from 100MB to <10KB

® ~6% cache-hit rate increase on SPEC2006 vs.
Glider

® ~59% cache-hit rate increase on Google Web
Search vs. LRU

address embedding

?

Linear Layer

bt 4
256 X d__ .4

embedding matrix

IR

el | el | el |

Address:0x1 12 1 1 ¢c5 1 | A1 |

b e - b e - b e -

Byte1 Byte2 Byte3

Google Research

A Note on Practicality address e:nbedding

Linear Layer

bt

Per-byte address embedding 256 X dembed
e Reduce embedding size from 100MB to <10KB embedding matrix

® ~6% cache-hit rate increase on SPEC2006 vs.

This work: Establish a proof-of-concept

Glider ~ 3 P

~50°, -hi i == == = =1
° 59% cache-hit rate increase on Google Web Address: ox1 121 1051 1 A1 |

Search vs. LRU T

Byte1 Byte2 Byte3

Future work: Production ready learned policies
e Smaller models via distillation (Hinton, et. al., 2015), pruning (Janowsky, 1989,
Han, et. al., 2015, Sze, et. al., 2017), or quantization
e Target domains with longer latency and larger caches (e.g., software ~ Google Research
caches)

A New Imitation / Reinforcement Learning Benchmark

Bellemare, et. al., 2012,
Silver, et. al., 2017, OpenAl, 2019, Levine, et. al., 2016, Lillicrap, et. al., 2015 EViCt
Vinyals, et. al., 2019

+ plentiful data - limited / expensive data + plentiful data
- delayed real-world utility + immediate real-world impact + immediate real-world impact

Google Research
Open-source cache replacement Gym environment coming soon!

Takeaways

e A new state-of-the-art approach for cache replacement by imitating the
oracle policy
o Future work: making this production ready

e A new benchmark for imitation learning / reinforcement learning research

Google Research

