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The Need for Faster Compute

Petaflop/s-days
4

o Small cache improvements can make large
differences! (Beckman, 2019)
L+ 717 0ot 11 e E.g. 1% cache hit rate improvement — 35%
decrease in latency (Cidon, et. al., 2016)
oo Caches are everywhere:
e CPU chips
- e Operating Systems
o e Databases
e Web applications
Our goal: Faster applications via better cache
replacement policies

(https://openai.com/bloa/ai-and-compute/)
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https://openai.com/blog/ai-and-compute/

TL;DR:

l.  We approximate the optimal cache replacement policy by
(implicitly) predicting the future

ll. Caching is an attractive benchmark for the general
reinforcement learning / imitation learning communities
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Cache Replacement
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Goal: Evict the cache lines to maximize cache hits Google Research



Cache Replacement
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Cache Replacement
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Cache Replacement

Reuse distance d (line): number of accesses from access t until the line is reused
d, (A =1,d,(B)>2d(C) =
2

Cache A B C

Accesses A -

Optimal Policy (Belady’s): Evict the line with the greatest reuse Google Research
distance (Belady, 1966)



Belady’s Requires Future Information

Reuse distance d (line): number of accesses from access t until the line is
reused

Problem: Computing reuse distance requires knowing the future
So in practice, we use heuristics, e.g.:

e |east-recently used (LRU)

e Most-recently used (MRU)

... but these perform poorly on complex access patterns
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Leveraging Belady’s

Idea: approximate Belady’s from past accesses
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Predicted decision » Optimal decision
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Prior Work
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Current state-of-the-art
(Shi et. al., 19, Jain et. al., ‘18)
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Prior Work
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Current state-of-the-art
(Shi et. al., 19, Jain et. al., ‘18)

+ binary classification is relatively
easy to learn

- traditional algorithm can’t
express optimal policy
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Evict line X

Trained on > Current line cache
Belady’s friendly or averse? T
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Current state-of-the-art Our proposal

(Shi et. al., “19, Jain et. al., “18)
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Cache Replacement Markov Decision Process
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Similar to Wang, et. al., 2019



Cache Replacement Markov Decision Process

Current cache
contents

A B D

Past accesses Current access

S tate S 2 Google Research

Similar to Wang, et. al., 2019



Cache Replacement Markov Decision Process

Actions A = replace A, B, or C no actions replace A, B, or D
A B C A B D A B D
T Miss Hit T Miss
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Similar to Wang, et. al., 2019



Cache Replacement Markov Decision Process

Reward R Miss Hit Miss
To — r1T — 1 ro —
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Leveraging the Optimal Policy

Typical imitation learning setting
(Pomerlau, 1991, Ross, et. al., 2011, Kim, et. al., 2013)

optimal action
a* = argmax, 7 (a | s)

\/

Learned policy
n(a| s)

v

maximize, log 7 (a* | s)

state s

Observation: Not all errors are equally bad
e Learning from optimal policy yields
greater training signal

state s;

/

T~

Learned policy

¥ (line | s;)

Approximate optimal policy
7* (line | s¢) o< exp dy(line)

N——

optimize, e.g., Dy, (7% (line | s;)||7* (line | s¢))

Concretely: minimize a ranking loss £

rank
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Reuse Distance as an Auxiliary Task

Observation: predicting reuse distance is correlated with cache replacement
Cast this as an auxiliary task (Jaderberg, et. al., 2016)

Loss
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Results

Optimal cache-hit rate
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LRU cache-hit rate

~19% cache-hit rate increase over Glider (Shi, et. al., 2019) on memory-intensive SPEC2006
applications (Jaleel, et. al., 2009)
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~64% cache-hit rate increase over LRU on Google Web Search



A Note on Practicality

This work: Establish a proof-of-concept

Per-byte address embedding
e Reduce embedding size from 100MB to <10KB

® ~6% cache-hit rate increase on SPEC2006 vs.
Glider

® ~59% cache-hit rate increase on Google Web
Search vs. LRU

address embedding
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A Note on Practicality address e:nbedding

Linear Layer

bt

Per-byte address embedding 256 X dembed
e Reduce embedding size from 100MB to <10KB embedding matrix

® ~6% cache-hit rate increase on SPEC2006 vs.

This work: Establish a proof-of-concept

Glider ~ 3 P

~50°, -hi i == == = =1
° 59% cache-hit rate increase on Google Web Address: ox1 121 1051 1 A1 |

Search vs. LRU T
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Future work: Production ready learned policies
e Smaller models via distillation (Hinton, et. al., 2015), pruning (Janowsky, 1989,
Han, et. al., 2015, Sze, et. al., 2017), or quantization
e Target domains with longer latency and larger caches (e.g., software ~ Google Research
caches)



A New Imitation / Reinforcement Learning Benchmark

Bellemare, et. al., 2012,
Silver, et. al., 2017, OpenAl, 2019, Levine, et. al., 2016, Lillicrap, et. al., 2015 EViCt
Vinyals, et. al., 2019

+ plentiful data - limited / expensive data + plentiful data
- delayed real-world utility + immediate real-world impact + immediate real-world impact

Google Research
Open-source cache replacement Gym environment coming soon!



Takeaways

e A new state-of-the-art approach for cache replacement by imitating the
oracle policy
o Future work: making this production ready

e A new benchmark for imitation learning / reinforcement learning research
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