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Misaligned Train-Test Metrics

Training objective often mis-aligned with the test evaluation metric

Evaluation metric is complex and is difficult to Training data drawn from a different
approximate with a smooth loss distribution than the test data
Train Test
F-measure Prec@k . . * -
AUC-PR Recall@k a ;
G-mean NDCG
H-mean MAP ‘

PRBEP MRR




Blackbox Metric w/ Compositional Structure

Evaluation Metric Common
E.g. F-measure, Precision@K Surrogate Losses

\ /N

M(0) ~ (£1(6), ..., £x(6))

Unknown / Black-box



Classification with Noisy Labels

Evaluation metric on true labels (e.g. ratings) Losses on cheap noisy labels (e.g. clicks)
(Small validation data) (Training data)

\ \

M(0) ~ (£1(6), ..., £x(6))

Unknown / Black-box



Complex Ranking Metrics

Precision@10 Different smooth surrogates for the metric

\ N\

M(0) ~ (£1(6), ..., £x(6))

\

Unknown / Black-box



Main Contributions

Equivalent optimization problem in lower-dimensional space:

min M(@) mmmmmm) Optimization over K-dim surrogate space
fcRd

Solve reformulated problem using projected gradient descent with
zeroth-order gradient estimates

We show convergence to a stationary point of M

Experiments on classification and ranking problems



Related Work

e Optimizing closed-form metrics
o e.g. Joachims (2005), Kar et al. (2014), Narasimhan et al. (2015), Yan et al. (2018)

e Optimizing black-box metrics

o Example-weighting (Zhou et al., 2019), Reinforcement learning (Huang et al., 2019),
Teacher model (Wu et al., 2018)
o Limited theoretical guarantees
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e This Paper
o Simple approach to combine a small set of useful surrogates to optimize a metric
o Directly estimates only the local gradients needed for gradient descent training
o Rigorous theoretical guarantees
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Reformulate as Optimization over Surrogate Space

e Space of achievable surrogate profiles:

L= {(£:(6),....0x(0))]6 € R



__________________

Reformulate as Optimization over Surrogate Space

e Space of achievable surrogate profiles:

L= {(£:(6),....0x(0))]6 € R

e Reformulate as a constrained optimization over K-dim surrogate space:
min M (6) ~ min ¢ (£
min M(0) ~ min (¢)

e Lower dim problem as usually K < d
o A

Model space Surrogate space
(d-dimension) (K-dimension)



M) ~ (£(6))

e e = J

Projected Gradient Descent over Surrogate Space

e Apply projected gradient descent to solve reformulated problem

min 1 (£)

el

e Challenges:

o 1 is not known
o L is not explicitly available

————————————————————————————

ow do you estimate gradients for 1?
ow do you project onto £7?

————————————————————————————

- — -
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Model space Surrogate space
(d-dimension) (K-dimension)
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Simplified PGD Algorithm

t

Et: a@
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Simplified PGD Algorithm

o Estimate local gradient g € R for 1) at £(%)

t

Et: a@
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Simplified PGD Algorithm

o Estimate local gradient g € R for 1) at £(%)
o Perturb model 8 and compute linear fit from losses to metric

£(9t —|— 61) M(Gt —|— 61)
|:£((9t + 62) /g\ ~ |:M(9t + 62)]

£ = £(6Y)



Simplified PGD Algorithm

o Estimate local gradient g € R for 1) at £(%)

o Perturb model 8 and compute linear fit from losses to metric

|:£((9t —|— 61)
E(Ot —I— 62)

M(Ht —|— 61)
g ~ |:M(9t "‘62)]

e Gradient update on surrogate profile:
£=¢ —-ng

£ = £(6Y)



Simplified PGD Algorithm

o Estimate local gradient g € R for 1) at £(%)
o Perturb model 8 and compute linear fit from losses to metric

E(@t —|— 61) M(@t —|— 61)
E(Gt + 62) a ~ M(Ht -+ 62)

e Gradient update on surrogate profile:
£=¢ —-ng

£ = £(6Y)

e Project £ to set of achievable surrogate profiles £

£t+1 — £(9t+1)



Simplified PGD Algorithm

o Estimate local gradient g € R for 1) at £(%)
o Perturb model 8 and compute linear fit from losses to metric

E(@t —|— 61) M(@t —|— 61)
E(Gt + 62) a ~ M(Ht -+ 62)

e Gradient update on surrogate profile:
£=¢ —-ng

£ = £(6Y)

e Project ¢ to set of achievable surrogate profiles £:
solve a regression problem in 6 to match target profile

9+l = argmin ||€(9) — £
0co

£t+1 — £(9t+1)



Convex Projection and Convergence

e Our actual algorithm works with surrogates ¢ () that are convex
e Even with convex surrogates, £ is not necessarily a convex set
e So we optimize over a convex superset of the surrogate space £

e We show that the projection onto this set can performed inexactly as
a convex regression problem in 6

U (convex)



Convex Projection and Convergence

e Our actual algorithm works with surrogates ¢ () that are convex
e Even with convex surrogates, £ is not necessarily a convex set
e So we optimize over a convex superset of the surrogate space £

e We show that the projection onto this set can performed inexactly as
a convex regression problem in 6

e Guarantee: Converges to a near stationary point of the metric
under smoothness/monotonicity assumptions, i.e.,

1
1gigrlTE[||Vw(€(0t))l|2] < O<ﬁ) + constant

U (convex)



Classification with Proxy Labels

e Minimize classification error with proxy labels, small validation set with true labels
e Sigmoid losses on the positive and negative examples used as surrogates

Marital
Adult Gender | o O \ric 0.333 0.322 0.314
Business Same Same 0.340 0.251 0.236
Business Phone No

(lower values are better)



F-measure with Noisy Features

e Maximize F-measure with features from one group of examples being noisy,
small validation sample with clean features

e Surrogates: hinge loss averaged over either the positive or negative examples,
calculated separately for each of the two groups

055 I | [ 1 [ I I $o
. @ 0.54 - s
Credit Default dataset g — R )
Predict if a customer would default D . S ) S "
Noisy features for male customers F e ' LogReg
S Weveas @@ Post-shift -~
O 050 - = * RelaxedFM _
- ~ GenRates
DA se ®-® Proposed
0.48 = 1 1 1 o

I I | I |
01 02 03 04 05 06 07 08 09
Fraction of noisy GO examples

(higher values are better)



Ranking with PRBEP

e Maximize Precision-Recall Break-Even Point:
o Precision at the threshold where precision and recall are equal
e Surrogates: Precision at Recalls 0.25, 0.5, 0.75

KDD Cup 2008 | 'rain 0.473 0.546
Dataset Test 0.441 SO

(higher values are better)



Conclusions

e Optimize a black-box metric by adaptively combining a small set of useful
surrogates.

e Proposed method applies projected gradient descent over a surrogate space,
and enjoys convergence guarantees.

e Experiments on classification tasks with noisy labels and features, and
ranking tasks with complex metrics.



