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Misaligned Train-Test Metrics
Training objective often mis-aligned with the test evaluation metric

Train Test

Training data drawn from a different 
distribution than the test data

Evaluation metric is complex and is difficult to 
approximate with a smooth loss

F-measure
AUC-PR
G-mean
H-mean
PRBEP

Prec@k
Recall@k

NDCG
MAP
MRR



Blackbox Metric w/ Compositional Structure 

Evaluation Metric
E.g. F-measure, Precision@K

Common 
Surrogate Losses

Unknown / Black-box



Classification with Noisy Labels 

Evaluation metric on true labels (e.g. ratings)
(Small validation data)

Losses on cheap noisy labels (e.g. clicks)
(Training data)

Unknown / Black-box



Complex Ranking Metrics

Precision@10 Different smooth surrogates for the metric

Unknown / Black-box



Main Contributions
● Equivalent optimization problem in lower-dimensional space:

● Solve reformulated problem using projected gradient descent with 
zeroth-order gradient estimates

● We show convergence to a stationary point of M

● Experiments on classification and ranking problems

Optimization over K-dim surrogate space 



Related Work
● Optimizing closed-form metrics

○ e.g. Joachims (2005), Kar et al. (2014), Narasimhan et al. (2015), Yan et al. (2018)

● Optimizing black-box metrics
○ Example-weighting (Zhou et al., 2019), Reinforcement learning (Huang et al., 2019), 

Teacher model (Wu et al., 2018)
○ Limited theoretical guarantees
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○ Example-weighting (Zhou et al., 2019), Reinforcement learning (Huang et al., 2019), 

Teacher model (Wu et al., 2018)
○ Limited theoretical guarantees

● This Paper
○ Simple approach to combine a small set of useful surrogates to optimize a metric
○ Directly estimates only the local gradients needed for gradient descent training
○ Rigorous theoretical guarantees

Related Work



Reformulate as Optimization over Surrogate Space
● Space of achievable surrogate profiles: 



Reformulate as Optimization over Surrogate Space
● Space of achievable surrogate profiles: 

● Reformulate as a constrained optimization over K-dim surrogate space:

● Lower dim problem as usually
θt

Model space
(d-dimension)

Surrogate space 
(K-dimension)



Projected Gradient Descent over Surrogate Space
● Apply projected gradient descent to solve reformulated problem

● Challenges:
○     is not known
○     is not explicitly available

θt

Model space
(d-dimension)

Surrogate space 
(K-dimension)

How do you estimate gradients for    ?
How do you project onto    ?



Simplified PGD Algorithm
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● Estimate local gradient                   for       at          
○ Perturb model θt and compute linear fit from losses to metric

● Gradient update on surrogate profile:

● Project     to set of achievable surrogate profiles    :                
solve a regression problem in θ to match target profile

Simplified PGD Algorithm



Convex Projection and Convergence
● Our actual algorithm works with surrogates            that are convex    

● Even with convex surrogates,     is not necessarily a convex set

● So we optimize over a convex superset of the surrogate space

● We show that the projection onto this set can performed inexactly as 
a convex regression problem in θ

(convex)



Convex Projection and Convergence
● Our actual algorithm works with surrogates            that are convex    

● Even with convex surrogates,     is not necessarily a convex set

● So we optimize over a convex superset of the surrogate space

● We show that the projection onto this set can performed inexactly as 
a convex regression problem in θ

● Guarantee: Converges to a near stationary point of the metric 
under smoothness/monotonicity assumptions, i.e., (convex)

+ constant



● Minimize classification error with proxy labels, small validation set with true labels
● Sigmoid losses on the positive and negative examples used as surrogates

Classification with Proxy Labels

Dataset Label Proxy LogReg PostShift Proposed

Adult Gender Marital
Status Wife 0.333 0.322 0.314

Business Same 
Business

Same 
Phone No 0.340 0.251  0.236

(lower values are better)



● Maximize F-measure with features from one group of examples being noisy, 
small validation sample with clean features

● Surrogates: hinge loss averaged over either the positive or negative examples, 
calculated separately for each of the two groups

F-measure with Noisy Features

(higher values are better)

Credit Default dataset
Predict if a customer would default
Noisy features for male customers



Ranking with PRBEP
● Maximize Precision-Recall Break-Even Point:

○ Precision at the threshold where precision and recall are equal
● Surrogates: Precision at Recalls 0.25, 0.5, 0.75

Kar et al. (2015) Proposed

Train 0.473 0.546

Test 0.441 0.480

(higher values are better)

KDD Cup 2008 
Dataset



Conclusions
● Optimize a black-box metric by adaptively combining a small set of useful 

surrogates.

● Proposed method applies projected gradient descent over a surrogate space, 
and enjoys convergence guarantees.

● Experiments on classification tasks with noisy labels and features, and 
ranking tasks with complex metrics.


