# Optimizing Black-box Metrics with Adaptive Surrogates

Qijia Jiang<sup>1</sup>, Olaoluwa (Oliver) Adigun<sup>2</sup>, **Harikrishna Narasimhan**<sup>3</sup>, Mahdi M. Fard<sup>3</sup>, Maya Gupta<sup>3</sup>

<sup>1</sup>Stanford, <sup>2</sup>USC, <sup>3</sup>Google Research





Google Research

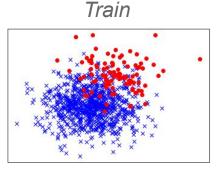
#### Misaligned Train-Test Metrics

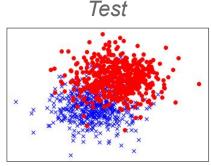
Training objective often mis-aligned with the test evaluation metric

Evaluation metric is complex and is difficult to approximate with a smooth loss

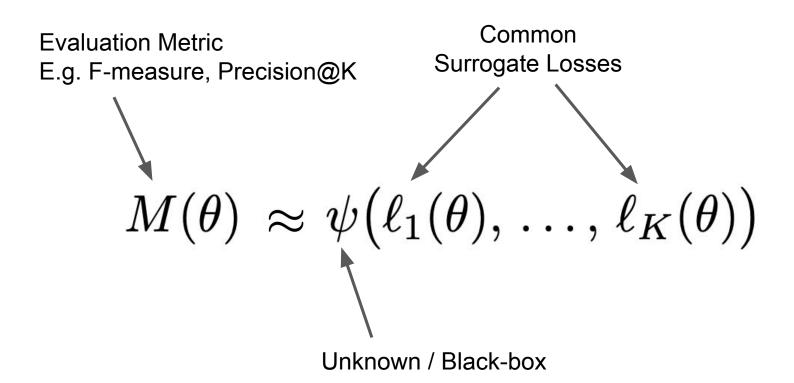
F-measure Prec@k
AUC-PR Recall@k
G-mean NDCG
H-mean MAP
PRBEP MRR

Training data drawn from a different distribution than the test data

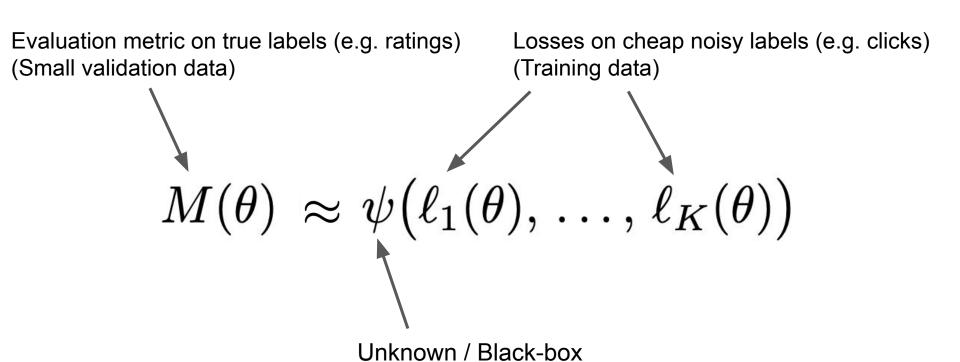




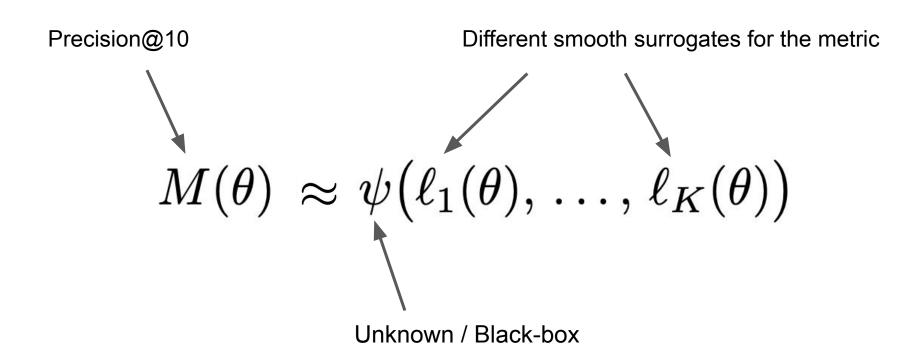
#### Blackbox Metric w/ Compositional Structure



#### Classification with Noisy Labels



### **Complex Ranking Metrics**



#### Main Contributions

Equivalent optimization problem in lower-dimensional space:

$$\min_{\theta \in \mathbb{R}^d} M(\theta)$$
 ———— Optimization over K-dim surrogate space

- Solve reformulated problem using projected gradient descent with zeroth-order gradient estimates
- We show convergence to a stationary point of M
- Experiments on classification and ranking problems

#### Related Work

#### Optimizing closed-form metrics

e.g. Joachims (2005), Kar et al. (2014), Narasimhan et al. (2015), Yan et al. (2018)

#### Optimizing black-box metrics

- Example-weighting (Zhou et al., 2019), Reinforcement learning (Huang et al., 2019),
   Teacher model (Wu et al., 2018)
- Limited theoretical guarantees

#### Related Work

#### Optimizing closed-form metrics

e.g. Joachims (2005), Kar et al. (2014), Narasimhan et al. (2015), Yan et al. (2018)

#### Optimizing black-box metrics

- Example-weighting (Zhou et al., 2019), Reinforcement learning (Huang et al., 2019),
   Teacher model (Wu et al., 2018)
- Limited theoretical guarantees

#### This Paper

- Simple approach to combine a small set of useful surrogates to optimize a metric
- Directly estimates only the local gradients needed for gradient descent training
- Rigorous theoretical guarantees

## Reformulate as Optimization over Surrogate Space

Space of achievable surrogate profiles:

$$\mathcal{L} := \{ (\ell_1(\theta), \dots, \ell_K(\theta)) \mid \theta \in \mathbb{R}^d \}$$

## Reformulate as Optimization over Surrogate Space

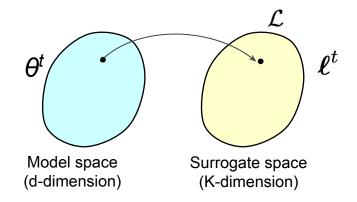
• Space of achievable surrogate profiles:

$$\mathcal{L} := \{ (\ell_1(\theta), \dots, \ell_K(\theta)) \mid \theta \in \mathbb{R}^d \}$$

• Reformulate as a constrained optimization over K-dim surrogate space:

$$\min_{\theta \in \mathbb{R}^d} M(\theta) \simeq \min_{\ell \in \mathcal{L}} \psi(\ell)$$

• Lower dim problem as usually  $K \ll d$ 



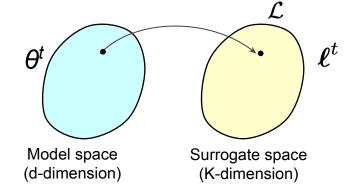
## Projected Gradient Descent over Surrogate Space

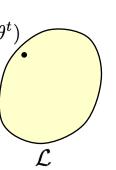
Apply projected gradient descent to solve reformulated problem

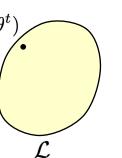
$$\min_{\ell \in \mathcal{L}} \psi(\ell)$$

- Challenges:
  - $\circ$   $\psi$  is not known
  - £ is not explicitly available

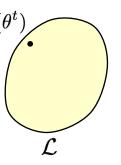
How do you estimate gradients for  $\psi$ ? How do you project onto  $\mathcal{L}$ ?





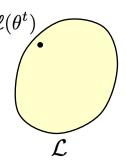


ullet Estimate local gradient  $\widehat{m{g}} \in \mathbb{R}^K$  for  $\psi$  at  $m{\ell}( heta^t)$ 



- ullet Estimate local gradient  $\widehat{m{g}} \in \mathbb{R}^K$  for  $\psi$  at  $m{\ell}( heta^t)$ 
  - $\circ$  Perturb model  $\theta^t$  and compute linear fit from losses to metric

$$egin{bmatrix} m{\ell}( heta^t + \epsilon_1) \ m{\ell}( heta^t + \epsilon_2) \ dots \end{bmatrix} \widehat{m{g}} \; pprox \; egin{bmatrix} M( heta^t + \epsilon_1) \ M( heta^t + \epsilon_2) \ dots \end{bmatrix}$$

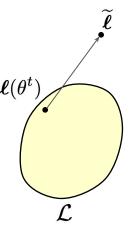


- ullet Estimate local gradient  $\widehat{m{g}} \in \mathbb{R}^K$  for  $\psi$  at  $m{\ell}( heta^t)$ 
  - $\circ$  Perturb model  $\theta^t$  and compute linear fit from losses to metric

$$\begin{bmatrix} \boldsymbol{\ell}(\theta^t + \epsilon_1) \\ \boldsymbol{\ell}(\theta^t + \epsilon_2) \\ \vdots \end{bmatrix} \widehat{\boldsymbol{g}} \approx \begin{bmatrix} M(\theta^t + \epsilon_1) \\ M(\theta^t + \epsilon_2) \\ \vdots \end{bmatrix}$$

Gradient update on surrogate profile:

$$\widetilde{m{\ell}} = m{\ell}^t - \eta \, \widehat{m{g}}$$



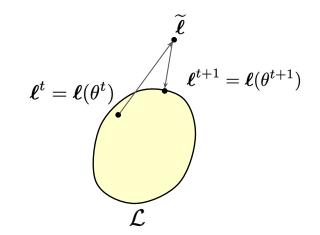
- ullet Estimate local gradient  $\widehat{oldsymbol{g}} \in \mathbb{R}^K$  for  $\psi$  at  $oldsymbol{\ell}( heta^t)$ 
  - $\circ$  Perturb model  $\theta^t$  and compute linear fit from losses to metric

$$\begin{bmatrix} \boldsymbol{\ell}(\theta^t + \epsilon_1) \\ \boldsymbol{\ell}(\theta^t + \epsilon_2) \\ \vdots \end{bmatrix} \widehat{\boldsymbol{g}} \approx \begin{bmatrix} M(\theta^t + \epsilon_1) \\ M(\theta^t + \epsilon_2) \\ \vdots \end{bmatrix}$$

Gradient update on surrogate profile:

$$\widetilde{m{\ell}} = m{\ell}^t - \eta \, \widehat{m{g}}$$

• Project  $\widetilde{\ell}$  to set of achievable surrogate profiles  $\mathcal L$ 



- Estimate local gradient  $\widehat{m{g}} \in \mathbb{R}^K$  for  $\psi$  at  $\ell(\theta^t)$ 
  - $\circ$  Perturb model  $\theta^t$  and compute linear fit from losses to metric

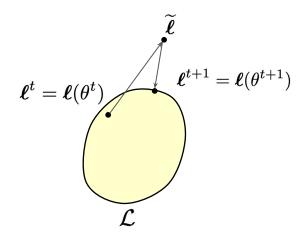
$$\begin{bmatrix} \boldsymbol{\ell}(\theta^t + \epsilon_1) \\ \boldsymbol{\ell}(\theta^t + \epsilon_2) \\ \vdots \end{bmatrix} \widehat{\boldsymbol{g}} \approx \begin{bmatrix} M(\theta^t + \epsilon_1) \\ M(\theta^t + \epsilon_2) \\ \vdots \end{bmatrix}$$

Gradient update on surrogate profile:

$$\widetilde{m{\ell}} = m{\ell}^t - \eta \, \widehat{m{g}}$$

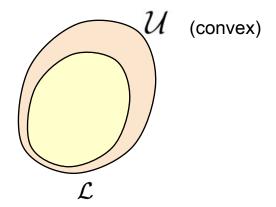
• Project  $\widetilde{\ell}$  to set of achievable surrogate profiles  $\mathcal{L}$ : solve a regression problem in  $\theta$  to match target profile

$$\theta^{t+1} = \underset{\theta \in \Omega}{\operatorname{argmin}} \| \boldsymbol{\ell}(\theta) - \tilde{\boldsymbol{\ell}} \|^2$$



#### Convex Projection and Convergence

- Our actual algorithm works with surrogates  $\ell_k(\theta)$  that are convex
- Even with convex surrogates,  $\mathcal{L}$  is not necessarily a convex set
- So we optimize over a convex superset of the surrogate space £
- We show that the projection onto this set can performed *inexactly* as a convex regression problem in  $\theta$



#### Convex Projection and Convergence

- Our actual algorithm works with surrogates  $\ell_k(\theta)$  that are convex
- Even with convex surrogates,  $\mathcal{L}$  is not necessarily a convex set
- So we optimize over a convex superset of the surrogate space £
- We show that the projection onto this set can performed *inexactly* as a convex regression problem in  $\theta$
- **Guarantee:** Converges to a near stationary point of the metric under smoothness/monotonicity assumptions, i.e.,

$$\min_{1 \leq t \leq T} \mathbb{E}[\|\nabla \psi(\ell(\theta^t))\|^2] \leq \mathcal{O}\Big(\frac{1}{\sqrt{T}}\Big)$$
 + constant

U (convex)

#### Classification with Proxy Labels

- Minimize classification error with proxy labels, small validation set with true labels
- Sigmoid losses on the positive and negative examples used as surrogates

| Dataset  | Label            | Proxy                  | LogReg | PostShift | Proposed |
|----------|------------------|------------------------|--------|-----------|----------|
| Adult    | Gender           | Marital<br>Status Wife | 0.333  | 0.322     | 0.314    |
| Business | Same<br>Business | Same<br>Phone No       | 0.340  | 0.251     | 0.236    |

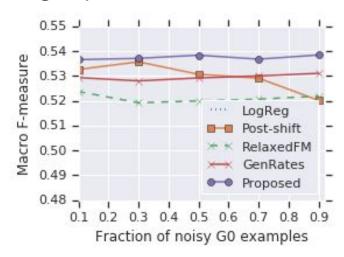
(lower values are better)

#### F-measure with Noisy Features

- Maximize F-measure with features from one group of examples being noisy, small validation sample with clean features
- Surrogates: hinge loss averaged over either the positive or negative examples,
   calculated separately for each of the two groups

#### **Credit Default dataset**

Predict if a customer would default Noisy features for male customers



(higher values are better)

#### Ranking with PRBEP

- Maximize Precision-Recall Break-Even Point:
  - o Precision at the threshold where precision and recall are equal
- Surrogates: Precision at Recalls 0.25, 0.5, 0.75

KDD Cup 2008 Dataset

|       | Kar et al. (2015) | Proposed |  |
|-------|-------------------|----------|--|
| Train | 0.473             | 0.546    |  |
| Test  | 0.441             | 0.480    |  |

(higher values are better)

#### Conclusions

- Optimize a black-box metric by adaptively combining a small set of useful surrogates.
- Proposed method applies projected gradient descent over a surrogate space, and enjoys convergence guarantees.
- Experiments on classification tasks with noisy labels and features, and ranking tasks with complex metrics.