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Graph-structured data are ubiquitous
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(a) molecules

(c) social networks (d) chemical pathways
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Learning graph representations

State-of-the-art models for representing graphs
@ Deep learning for graphs: graph neural networks (GNNs)
o Graph kernels: Weisfeiler-Lehman (WL) graph kernels
@ Hybrid models attempt to bridge both worlds: graph neural tangent kernels
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Learning graph representations

State-of-the-art models for representing graphs

@ Deep learning for graphs: graph neural networks (GNNs)

o Graph kernels: Weisfeiler-Lehman (WL) graph kernels

@ Hybrid models attempt to bridge both worlds: graph neural tangent kernels
Our model:

@ A new type of multilayer graph kernel: more expressive than WL kernels

@ Learning easy-to-regularize and scalable unsupervised graph representations

@ Learning supervised graph representations like GNNs
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Graphs with node attributes

G=V,Ea:V—R3

a(u) = [0.3,0.8,0.5]

@ A graph is defined as a triplet (V, &, a);
@ V and & correspond to the set of vertices and edges;
@ a:V — R%is a function assigning attributes to each node.
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Graph kernel mappings

@ Map each graph G in X' to a vector ¢(G) in H, which lends itself to learning tasks.

[Lei et al., 2017, Kriege et al., 2019]
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Graph kernel mappings

@ Map each graph G in X' to a vector ¢(G) in H, which lends itself to learning tasks.

@ A large class of graph kernel mappings can be written in the form

0(G) == Z Ybase(fc(u))  where ppase embeds some local patterns (¢ (u) to H.
uey

[Lei et al., 2017, Kriege et al., 2019]
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Basic kernels: walk and path kernel mappings

@ Pi(G, u) := paths of length k from node v in G. The k-path mapping is
Sopath(u) = Z 5a(p)(')
pG'Pk(G,U)

@ a(p): concatenated attributes in p; ¢: the Dirac function.
® path(u) can be interpreted as a histogram of paths occurrences.
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Basic kernels: walk and path kernel mappings

@ Pi(G, u) := paths of length k from node v in G. The k-path mapping is

Sopath(u) = Z 5a(p)(')

pGPk(G,u)

@ a(p): concatenated attributes in p; ¢: the Dirac function.

® path(u) can be interpreted as a histogram of paths occurrences.

@ Path kernels are more expressive than walk kernels, but less preferred for
computational reasons.
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A relaxed path kernel
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Issues of the path kernel mapping:
@ J allows hard comparison between paths thus only works for discrete attributes.

6
Gaussian

B

(Ppath(u) = Z 5a(p)(')

pEPk(G,U)

@ J is not differentiable, which cannot be “optimized” with back-propagation.
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A relaxed path kernel
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Issues of the path kernel mapping:
@ J allows hard comparison between paths thus only works for discrete attributes.

6
Gaussian

B

(Ppath(u) = Z 5a(p)(')

pEPk(G,U)

— Y el
pG'Pk(G,U)

@ J is not differentiable, which cannot be “optimized” with back-propagation.

Relax it with a “soft” and differentiable mapping

@ interpreted as the sum of Gaussians centered at each path features from u.
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One-layer GCKN: a closer look on the relaxed path kernel

@ We define the one-layer GCKN as the relaxed path kernel mapping

o1(u) = Z o Flalp)—I? Z ®1(a(p)) € Ha.

pEP(G,u) PEPK(G,u)

@ This formula can be divided into 3 steps:

e path extraction: enumerating all Px(G, u)
o kernel mapping: evaluating Gaussian embedding ®; of path features
o path aggregation: aggregating the path embeddings
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One-layer GCKN: a closer look on the relaxed path kernel

@ We define the one-layer GCKN as the relaxed path kernel mapping

o1(u) = Z o Flalp)—I? Z ®1(a(p)) € Ha.

pEP(G,u) PEPK(G,u)

@ This formula can be divided into 3 steps:

e path extraction: enumerating all Px(G, u)
o kernel mapping: evaluating Gaussian embedding ®; of path features
o path aggregation: aggregating the path embeddings

@ We obtain a new graph with the same topology but different features
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Construction of one-layer GCKN

W, E¢1:V—=H)

T

path aggregation

ath aggregati
kernel mapping path aggregation

path extraction

WV, E,a:V >R
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From one-layer to multilayer GCKN

@ We can repeat applying ¢path to the new graph

(V,E, ) ‘ppath (V g S01) Sopath (V g g02) Ppath ) ‘Ppath (V 8 SOJ)

@ ¢j(u) represents the information about a neighborhood of w.

@ Final graph representation at layer j, 0;(G) = >, oy ¢j(u).
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From one-layer to multilayer GCKN

@ We can repeat applying ¢path to the new graph

(V,E,a) ‘ppath (V g S01) Sopath (V g (p2) @p_ath) ) ‘Ppath (V 8 QOJ)

@ ¢j(u) represents the information about a neighborhood of w.

@ Final graph representation at layer j, 0;(G) = >, oy ¢j(u).
@ Why is the multilayer model interesting 7
o applying @path once can capture paths: GCKN-path;
e applying twice can capture subtrees: GCKN-subtree;
e so applying even more times may capture higher-order structures ?
o Long paths cannot be enumerated due to computational complexity, yet multilayer
model can capture long-range substructures.
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Scalable approximation of Gaussian kernel mapping

(Ppath(u) = Z <D(a(p))

pGPk(G,u)

o 2 e e[ . . H
o ®(x) = e 2l ¢ H is infinite-dimensional and can be expensive to compute.

[Chen et al., 2019a,b]
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Scalable approximation of Gaussian kernel mapping
(Ppath(u) = Z ¢(a(p))
PEP(G,u)

e 2 e e[ . . H
o ®(x) = e 2l ¢ H is infinite-dimensional and can be expensive to compute.

@ Nystrom provides a finite-dimensional approximation W(x) € R9 by orthogonally
projecting ®(x) onto some finite-dimensional subspace:

span(®(z1),...,P(zy)) parametrized by Z = {z, ..., z;},

where z; € R can be interpreted as path features.

[Chen et al., 2019a,b]



Scalable approximation of Gaussian kernel mapping

(ppath(u) = Z <D(a(p))

pGPk(G,u)

e 2 e e[ . . H
o ®(x) = e 2l ¢ H is infinite-dimensional and can be expensive to compute.

@ Nystrom provides a finite-dimensional approximation W(x) € R9 by orthogonally
projecting ®(x) onto some finite-dimensional subspace:

span(®(z1),...,P(zy)) parametrized by Z = {z, ..., z;},

where z; € R can be interpreted as path features.
@ The parameters Z can be learned by

o (unsupervised) K-means on the set of path features;
o (supervised) end-to-end learning with back-propagation.

[Chen et al., 2019a,b]
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Experiments on graphs with discrete attributes

MUTAG

@ Accuracy improvement with
respect to the WL subtree
kernel.

@ GCKN-path already
outperforms the baselines.

PRQTEINS

PTC @ Increasing number of layers
brings larger improvement.

@ Supervised learning does not

== WL subtree improve performance, but

== GNTK
...... aeN leads to more compact
""" GIN representations.

—— GCKN-path-unsup
—— GCKN-subtree-unsup
GCKN-subtree-sup

[Shervashidze et al., 2011, Du et al., 2019, Xu et al., 2019, Kipf and Welling, 2017]
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Experiments on graphs with continuous attributes

ENZYMES

@ Accuracy improvement with
respect to the WWL kernel.

@ Results similar to discrete
case.

PROTEINS

@ Path features seem
presumably predictive enough.

--- WWL
GNTK

—— GCKN-path-unsup

—— GCKN-subtree-unsup
GCKN-subtree-sup

BZR

[Du et al., 2019, Togninalli et al., 2019]



Model interpretation for mutagenicity prediction

@ Idea: find the minimal connected component that preserves the prediction.

C O C H

N
Il =

F

GCKN

[Ying et al., 2019]
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Take-home messages

@ GCKN is a multilayer kernel for graphs based on paths, which allows to control
the trade-off between computation and expressiveness.

@ lIts graph representations can be learned in both supervised and unsupervised
fashions. Unsupervised models are easy-to-regularize and scalable.

@ A straightforward model interpretation is also provided.

@ Our code is freely available at https://github.com/claying/GCKN.
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https://github.com/claying/GCKN
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Weisfeiler-Lehman subtree kernel

@ Enumerating subtree patterns can be exponentially costly. Is there a fast way ?
@ WL algorithm: iterative enumeration for graphs with discrete node labels.

o We define a sequence of node labels initialized with ag = a.

o At iteration / > 1, a;(u) = hash([a;—1(u),sort({a;—1(v) | v € N(uv)})]).

@ WL subtree kernel at depth k is defined as

’{subtree(u7 ul) = 6(‘91'(“)’ a;'(ul))
[Shervashidze et al., 2011]
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Motivation: link between walk and WL subtree kernels

Is there some relation between the base kernels xyak and Ksubtree ?

WL subtree kernel as a 2-layer walk kernel

Let M(u, u") be the set of exact matchings of subsets of the neighborhoods of two
nodes u and v’. For any u € G and v’ € G’ such that |M(u, )| =1,

Hsubtree(ua Ul) = 5(90wa|k(u)7 (pCvaIk(ul))v (1)

where @ik is the feature map of ki satisfying pwai(u) = ZpGWk(G,u) ws(p) -

e A sufficient condition for |[M(u, u")| = 1: u and v’ have same degrees and both
of them have distinct neighbors.

o If we replace @path instead of @y, We capture subtrees without repeated nodes !
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Motivation: link between walk and WL subtree kernels

Is there some relation between the base kernels kyai and Ksuptree !

WL subtree kernel as a 2-layer walk kernel

Let M(u, u") be the set of exact matchings of subsets of the neighborhoods of two
nodes u and u’. For any u € G and v’ € G’ such that [M(u, )| =1,

Kvsubtree(ua U/) = 5(80wa|k(u)’ (p\//valk(u/))7 (1)

where @yl is the feature map of Kwai satistying pwaik(t) = > e, (6,u) 5(P) -

Can we go beyond subtrees to higher order patterns ?
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Motivation: link between walk and WL subtree kernels

Is there some relation between the base kernels xyak and Keubtree ?

WL subtree kernel as a 2-layer walk kernel

Let M(u, u") be the set of exact matchings of subsets of the neighborhoods of two
nodes u and v'. For any u € G and v’ € G’ such that |[M(u, )| =1,

Hsubtree(ua U,) = 5(30walk(u)a (Pcvalk(u/))v (1)

where .k is the feature map of Ky, satisfying puaik(u) = Zpewk(G,u) ws(p) -

Can we go beyond subtrees to higher order patterns ?
Composing path kernels !
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