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Trustworthy AI
“AI has significant potential to help solve challenging problems, 

including by advancing medicine, understanding language, and fueling scientific discovery.
To realize that potential, it’s critical that AI is used and developed responsibly. ”

-                          AI, 2020

“Moving forward, “build for performance” will not suffice as an AI design paradigm. 
 We must learn how to build, evaluate and monitor for trust.”

-                    Trusting AI, 2020
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Two approaches
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⚬   Two-step approach: Sanitize data -> Fair training 
     Downside: very difficult to “decouple" poisoning and bias 
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Fairness
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⚬   A machine learning model learns bias and discriminations in the data

⚬   The fairness of a (binary) classifier can be defined in various ways:

⚬   The level of fairness can be measured as a ratio or difference
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⚬   The fairness of a (binary) classifier can be defined in various ways:

⚬   The level of fairness can be measured as a ratio or difference

Fairness
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Robustness

⚬   Datasets are easy to publish nowadays, but as a result easy to “poison" as well
     -   Poison = noisy, subjective, or even adversarial

     - Attacker’s goal   :  Increase the test loss by poisoning data

     - Defender’s goal :  Train a classifier with small test loss

⚬   Already a serious issue in federated learning
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Fairness + Robustness
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What happens if we just apply a fairness-aware algorithm on a poisoned dataset?

-  May result in a strictly suboptimal (accuracy, fairness) than vanilla training
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(Acc, DI) = (1, 0.5)
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Motivating example

Vanilla classifier
(Acc, DI) = (1, 0.5)

Fair classifier
(Acc, DI) = (0.8, 1)

Vanilla classifier 
     Accpoi = 0.9

(Accclean, DI) = (0.9, 0.67)

Fair classifier 
 Accpoi = 0.8
(Accclean, DI) = (0.6, 1)
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Fairness + Robustness
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What happens if we just apply a fairness-aware algorithm on a poisoned dataset?

-  May result in a strictly suboptimal (accuracy, fairness) than vanilla training

We need a holistic approach to fair and robust training. FR-Train!
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FR-Train - Main contributions
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⚬   FR-Train is a holistic framework for fair and robust training

⚬   Extends a state-of-the-art fairness-only method called Adversarial Debiasing
     -   Provides a novel mutual information (MI)-based interpretation of adversarial learning
      -   Adds a robust discriminator that uses a small clean validation set for data sanitization

⚬   We also propose crowdsourcing methods for constructing a clean validation set
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Experimental setting
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⚬   Synthetic data
    -   Poisoning (label flipping):  10% of training data
    -   Validation set:  10% of training data

⚬   Real data (results in paper)
    -   COMPAS: Predict recidivism in two years for criminals
    -   AdultCensus: Predict whether annual income > $50K or not
    -   Poisoning:  10% of training data
    -   Validation set:  5% of training data
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Two-step approach :
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+ Fair training

Fair-only algorithms

Data sanitization 
using clean val. set 

Logistic regression

Holistic approach = 
high fairness & accuracy
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Takeaways

⚬   Trustworthy AI needs both fair and robust training

⚬   However, addressing fairness and robustness separately is suboptimal

⚬   FR-Train is a holistic framework for trustworthy AI performing fair and robust training 
    -   Mutual information-based interpretation of adversarial learning
    -   Novel architecture that enjoys the synergistic effect of fair and robust discriminators
    -   Requires a small clean validation set, which can be constructed using crowdsourcing

⚬   Lots of open problems
    -   Without clean validation set
    -   Other poisoning
    -   Algorithm stability
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⚬   Trustworthy AI needs both fair and robust training

⚬   However, addressing fairness and robustness separately is suboptimal

⚬   FR-Train is a holistic framework for trustworthy AI performing fair and robust training 
    -   Mutual information-based interpretation of adversarial learning
    -   Novel architecture that enjoys the synergistic effect of fair and robust discriminators
    -   Requires a small clean validation set, which can be constructed using crowdsourcing

⚬   Lots of open problems
    -   Without clean validation set
    -   Other poisoning
    -   Algorithm stability


