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Overview – Motivation

Typical metrics like L¹ or L² operate locally → structures and patterns are ignored

Recognition of spatial contexts with CNNs

Mathematical metric properties should be considered
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Overview – Results

Single example: distance comparison
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Overview – Results

Single example: distance comparison Combined test data: correlation evaluation

Plume (a) Reference Plume (b)

LSiM (ours) L² Ground Truth
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Related Work

“Shallow” vector space metrics

– Metrics induced by Lp-norms, peak signal-to-noise ratio (PSNR)

– Structural similarity index (SSIM) [Wang04]

Evaluation with user studies for PDE data

– Liquid simulations [Um17] 

– Non-oscillatory discretization schemes [Um19]

Image-based deep metrics with CNNs

– E.g. learned perceptual image patch similarity (LPIPS) [Zhang18]

[Wang04]  Wang, Bovik, Sheikh, and Simoncelli. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 2004
[Um17]  Um, Hu, and Thuerey. Perceptual Evaluation of Liquid Simulation Methods. ACM Transactions on Graphics, 2017
[Um19]  Um, Hu, Wang, and Thuerey. Spot the Difference: Accuracy of Numerical Simulations via the Human Visual System. CoRR, abs/1907.04179, 2019
[Zhang18]  Zhang, Isola, Efros, Shechtman, and Wang. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. CVPR, 2018
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Time depended, motion-based PDE with one varied initial condition
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Data Generation

Time depended, motion-based PDE with one varied initial condition

Chaotic behavior in controlled environment → added noise to adjust data difficulty

noise1,1(s) noise1,2(s) noise1 , t(s)
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Training Data

Eulerian smoke plume Liquid via FLIP [Zhu05]

Advection-diffusion transport Burger’s equation

[Zhu05]  Zhu and Bridson. Animating sand as a fluid. ACM SIGGRAPH, 2005



Test Data

Liquid (background noise) Advection-diffusion transport (density)

Shape data Video data

TID2013 [Ponomarenko15]

[Ponomarenko15]  Ponomarenko, Jin, Ieremeiev, et al. Image database TID2013: Peculiarities, results and perspectives. Signal Processing-Image Communication, 2015



Method – Base Network

Siamese architecture (shared weights) → Convolution + ReLU layers

Feature extraction from both inputs

Existing network possible → specialized model works better

Base
Network

Base
Network

Feature maps:
sets of 3rd order tensors 



Method – Feature Normalization

Adjust value range of feature vectors along channel dimension

– Unit length normalization → cosine distance (only angle comparison)

– Element-wise std. normal distribution → angle and length in global length distribution

Base
Network

Base
Network

Feature maps:
sets of 3rd order tensors 

Feature map
normalization

Feature map
normalization



Method – Latent Space Difference

Actual comparison of feature maps → element-wise distance

Must be a metric w.r.t. the latent space → ensure metric properties

           or              are useful options

Base
Network

Base
Network

Feature maps:
sets of 3rd order tensors 

Element-wise
latent space
difference

Difference maps:
set of 3rd order tensors 
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Method – Aggregations

Compression of difference maps to scalar distance prediction

Learned channel aggregation via weighted average

Simple aggregations with sum or average

Base
Network

Base
Network

Feature maps:
sets of 3rd order tensors 

Feature map
normalization
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latent space
difference

Difference maps:
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Channel
aggregation:

weighted avg.

1 Learned weight 
per feature map

Average maps:
set of 2nd order tensors 

Spatial
aggregation:

average

Layer
aggregation:
summation

Distance
output

d
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scalar
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Loss Function

Ground truth distances c and predicted distances d

Mean squared error term → minimize distance deviation directly

Inverted correlation term → maximize linear distance relationship

L(c , d) = λ1(c−d)
2
+ λ2(1−

(c−c̄)⋅(d−d̄)
‖c−c̄‖2 ‖d−d̄‖2 )



Results

Evaluation with Spearman’s rank correlation

Ground truth against predicted distances

Metric
Validation data sets Test data sets

Smo Liq Adv Bur TID LiqN AdvD Sha Vid All

L2 0.66 0.80 0.74 0.62 0.82 0.73 0.57 0.58 0.79 0.61

SSIM 0.69 0.74 0.77 0.71 0.77 0.26 0.69 0.46 0.75 0.53

LPIPS 0.63 0.68 0.68 0.72 0.86 0.50 0.62 0.84 0.83 0.66

LSiM 0.78 0.82 0.79 0.75 0.86 0.79 0.58 0.88 0.81 0.73



Real-world Evaluation

ScalarFlow [Eckert19] WeatherBench [Rasp20]

Johns Hopkins Turbulence Database (JHTDB) [Perlman07]

[Eckert19]  Eckert, Um, and Thuerey. Scalarflow: A large-scale volumetric data set of real-world scalar transport flows [...]. ACM Transactions on Graphics, 2019
[Rasp20]  Rasp, Dueben, Scher, Weyn, Mouatadid, and Thuerey. Weatherbench: A benchmark dataset for data-driven weather forecasting. CoRR, abs/2002.00469, 2020
[Perlman07]  Perlman, Burns, Li, and Meneveau. Data exploration of turbulence simulations using a database cluster. ACM/IEEE Conference on Supercomputing, 2007



Real-world Evaluation

Retrieve order of spatial and temporal 
frame translations

Six interval spacings per data repository

180-240 sequences each

Mean and standard deviation over 
correlation of each spacing

L² SSIM LPIPS LSiM (ours)
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Future Work

Accuracy assessment of new simulation methods

Parameter reconstructions of observed behavior

Guiding generative models of physical systems

Extensions to other data

– 3D flows and further PDEs

– Multi-channel turbulence data



Thank you for your attention!

Join the live-sessions for questions and discussion

Source code available at https://github.com/tum-pbs/LSIM

https://github.com/tum-pbs/LSIM
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