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Intro



Markov chain Monte Carlo

The increasing concern for Al safety problems draws our attention to
Markov chain Monte Carlo (MCMC), which is known for

+ Multi-modal sampling [Teh et al., 2016]
- Non-convex optimization [Zhang et al., 2017]



Acceleration strategies for MCMC

Popular strategies to accelerate MCMC:

- Simulated annealing [Kirkpatrick et al., 1983]
- Simulated tempering [Marinari and Parisi, 1992]
- Replica exchange MCMC [Swendsen and Wang, 1986]



Replica exchange stochastic
gradient MCMC



Replica exchange Langevin diffusion

Consider two Langevin diffusion processes with 71 > 7

dBl" = —vu(B")dt + /2rmaw)
dpt? = ~VU(B)dt + v/2mdw?,

Moreover, the positions of the two particles swap with a probability

58", 8Py .= o3 =) (v -us™)

In other words, a jump process is included in a Markov process

P(Beyat = ( t(z),ﬁtm)Iﬂt:(ﬂE”, t(z))): rs(B (1) ﬂt(z))
P(Berar = (8. 8718 = (87, 8) =1 - rs(8, Bt



Exploration

Figure 1: Trajectory plot for replica exchange Langevin diffusion.



Why the naive numerical algorithm fails

Consider the scalable stochastic gradient Langevin dynamics
algorithm [Welling and Teh, 2011]

B, =B — mevL(B) + v2memel”
5,21)1 = Bf(; —mVL(BY) + v 277#@5;e c

Swap the chains with a naive swapping rate rS(B,(?Ewgﬁ,z)nﬁ:
S(B(,, B2, = (=) (B -TA) ("

Exponentiating the unbiased estimators L(,@ ;) leads to a large bias.

SIn the implementations, we fix rm, = 1 by default.
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A corrected algorithm

Assume L(8) ~ N'(L(8),0?) and consider the geometric Brownian
motion of {S¢}icpo,q) in each swap as a Martingale

5, = o(3) (ETE-(3-2)7)
(2)

Taking the derivative of §t with respect to t and W, 1to’s lemma gives,

=~ (dS: 1d%S, dse . 7 1\ ~
5y = <dt+2dvv§> W= 3 () oS

By fixing t = 1in (2), we have the suggested unbiased swapping rate

S = e(%_%) (R@”)—L(g@))_



A corrected algorithm

Assume L(8) ~ N'(L(8),0?) and consider the geometric Brownian
motion of {S¢}icpo,q) in each swap as a Martingale

5, = o(3) (ETE-(3-2)7)
(2)

Taking the derivative of §t with respect to t and W, 1to’s lemma gives,

=~ (dS: 1d%S, dse . 7 1\ ~
5y = (m%aw@) W= 3 () oS

By fixing t = 1in (2), we have the suggested unbiased swapping rate

3, = o(F-%) (LEM-TE)- (£ -3) o)



Unknown corrections in practice
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Figure 2: Unknown corrections on CIFAR 10 and CIFAR 100 datasets.



An adaptive algorithm for unknown corrections

Sampling step
BY. =B — n"VL(BY) + /21 el
i :,622) — VLB + /2P e,
Stochastic approximation step
Obtain an unbiased estimate &2, for 2.
81 = (1= Ym)85 + Ymbmin,
Swapping step

Generate a uniform random number u € [0,1].
a T =2 -7 )%n
8 oo (3 - 3) (A0 - LA - {530

Ifu<$: Swap B)), and B,



Convergence Analysis




Discretization Error

Replica exchange SGLD tracks the replica exchange Langevin
diffusion in some sense.

Lemma (Discretization Error)
Given the smoothness and dissipativity assumptions in the appendix,

and a small (fixed) learning rate n, we have that

E[supo< <7 18:—B7 |I1< O(n+max; E[|| I’ ]+max; /El ¢1[2),

where 5{’ Is the continuous-time interpolation for reSGLD,
¢ := VU — VU is the noise in the stochastic gradient, and ) := S — S
Is the noise in the stochastic swapping rate.



Accelerated exponential decay of W,

(i) Log-Sobolev inequality for Langevin diffusion [Cattiaux et al., 2010]

Hessian Lower bound
Smooth gradient condition — V?G = —Clyy for some constant C > 0.

Poincaré inequality
[Chen et al,, 2019] — 2(v||7) < Cpg(\/%)

Lyapunov condition
HmanrM

a/k- T = 15
Via,x) = e () T < v = (Il + Ibal?)

(ii) Comparison method: acceleration with a larger Dirichlet form

gs(f) = g(f) + % /S(X1,X2) . (f(Xz,X1) —f(Xq,Xz))zdﬂ'(Xq,Xz),, (3)

acceleration
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Convergence of reSGLD

Theorem (Convergence of reSGLD) _
Let the smoothness and dissipativity assumptions hold. For the

distribution {u}e>o associated with the discrete dynamics {E,?},@,
we have the following estimates, for k € N,

Wi () < Doe™F1+8)/es 4 A(ni 4 max(E[||¢i]2])? + max(E [|vi?])*),
] |

dui . . .
where ds = min; L\/;) —1is the acceleration effect depending on
£V 72)

du;
the swapping rate S, Do = /2C1sD(po]|7), ds := min; EWar) _q
&(

dp
T )

1



Acceleration-accuracy trade-off

Larger correction factor? F
Larger acceleration, lower accuracy

Larger batch size n
Larger acceleration, slower evaluation

a1 5-2”
aWhere it is defined: $) = exp ((; -1 (L(Bf:+)1) ~1BY,) - W))



Acceleration-accuracy trade-off

correction factor? F
acceleration, accuracy

Larger batch size n
Larger acceleration, slower evaluation

1 _1)s2
aWhere it is defined: §; = exp ((:1 - %) (Z(BSL) _N(B&)W) _ &) m“))



Acceleration-accuracy trade-off

Larger correction factor? F
Larger acceleration, lower accuracy

batch size n
acceleration, evaluation

a1 5-2”
aWhere it is defined: 51 = exp ((:1 = %) (L(B&h) = L(ﬂfﬁw) = (”}J”))



Experiments




Sampling from Gaussian mixture distributions
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Figure 3: Evaluation of reSGLD on Gaussian mixture distributions, where
reSGLD proposes to adaptively estimate the unknown corrections and the
naive reSGLD doesn’'t make any corrections to adjust the swapping rates.



Supervised Learning (1): Correction factor matters
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Supervised Learning (I1): Batch size matters

Table 1: PREDICTION ACCURACIES (%) WITH DIFFERENT BATCH SIZES ON CIFART0 &

CIFAR100 USING RESNET-20.

BATCH M-SGD SGHMC RESGHMC
CIFAR10

256 | 94.21£0.16 94.224+0.12 94.62+0.18

1024 | 94.494+0.12 94.57+0.14 95.01+0.16
CIFAR100

256 | 72.454+0.20 72.4940.18 74.14+0.22

1024 | 73.31£0.18 73.23£0.20 75.11+0.26




Bayesian GAN for Semi-supervised Learning

Table 2: SEMI-SUPERVISED LEARNING ON CIFART00 AND SVHN BASED ON
DIFFERENT NUMBER OF LABELS.

Ns

CIFAR100

SVHN

SGHMC

RESGHMC

SGHMC

RESGHMC

2000
3000
4000
5000

50.76£0.71
53.07£0.71
57.054+0.59
59.34£0.64

55.53+ 0.64
57.09+ 0.77
62.23+ 0.69
64.83+ 0.72

88.75£0.44
91.32+0.41
91.9240.41
92.63£0.46

91.59+0.38
94.03+0.36
94.25+0.31
94.33+0.34
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Conclusion




Achieved Future works

Algorithm _ Generalization
Scalable and adaptive. -
Relax normal to the heavy-tailed

Theory generalization of Lévy-stable

The §ccelerated CONVETSENCE  jistribution [Simsekli et al,, 2019]
implies an acceleration

-accuracy trade-off Variance reduction
Experiments Variance reduction [Xu et al., 2018] to

Extensive experiments with obtain a larger acceleration effect.
significant improvements.
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