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RL problems objectives

• The expected 𝛾𝑒-discounted return (value function) 

• Policy Evaluation 

• Policy Optimization 

Evaluation discount factor

How can we improve perfomance in the limited data regime?



Discount regularization

• Discount regularization: 

• Theoretical analysis:
• Petrik and Scherrer ’09 – Approx. DP

• Jiang ’15 – model based 

• Regularization effect:
• ↑ Bias

• ↓ Variance   

• Our work:
• In TD learning,  discount regularization == explicit added regularizer

• When is discount regularization effective? 

Better performance for limited data

We show 

“guidance discount factor” (Jiang ’15 )

෠𝑉 − 𝑉𝛾

𝑉𝛾−𝑉𝛾𝑒

Algorithm hyperparameter



Temporal Difference (TD) Learning

• Policy evaluation with value-function model

• Batch TD(0) 

Discount factor hyperparameter

Aim to minimize



Equivalent Form

• Equivalent update steps

⇕

Discount regularization
(using 𝜸 < 𝜸𝒆)

Using  𝜸𝒆
+ regularization term

⇕

Activation regularization

Regularization term gradient

Similar Equivalence
• (expected) SARSA
• LSTD



The Equivalent Regularizer

• Activation regularization

• Tabular case:

Discount regularization is sensitive to the empirical distribution

𝐿2 regularization



Tabular Experiments

• Policy evaluation,  𝜋 𝑎 𝑠 uniform.   

• Goal: find ෠𝑉 that estimates 𝑉𝛾𝑒
𝜋 (𝛾𝑒 = 0.99)

• Loss measures:

• 𝑳𝟐 loss:     ෠𝑉 − 𝑉𝛾𝑒
𝜋
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• Ranking Loss: −Kandal`s_Tau ෠𝑉, 𝑉𝛾𝑒
𝜋

( ~ number of order switches between state ranks)

• Average over 1000 MDP instances

• Data:  trajectories  of 50 time-steps

4x4 GridWorld

In each MDP Instance:
• Draw 𝔼𝑅 𝑠
• Draw  𝑃(. |𝑠, 𝑎)



TD(0)
Results

Ranking
Loss

𝐿2 loss

Discount Regularization 𝐿2 Regularization

(𝛾𝑒 = 0.99)



Effect of the Empirical Distribution

• Equivalent regularizer:

• Tuples (𝑠, 𝑠′, 𝑟) generation:   𝑠~𝑔(𝑠) , 𝑠′~𝑃𝜋 𝑠′ 𝑠 , 𝑟~𝑅𝜋(𝑠)

• For each MDP   - draw distribution 𝑔(𝑠) at 𝑑𝑇𝑉 from uniform

𝑳𝟐 regularizationDiscount regularization

(𝛾𝑒 = 0.99)
UniformUniform

Non-uniform Non-uniform



Effect of the Mixing Time

• Lower mixing time (slow mixing) → Higher estimation variance 
→ more regularization is needed 

𝑳𝟐 regularizationDiscount regularization

(LSTD, 2 trajectories)
(𝛾𝑒 = 0.99)

Fast mixing

Slow mixing Slow mixing

Fast mixing



Policy Optimization

Goal:    min
𝜋

𝑉𝛾𝑒
𝜋 − 𝑉𝛾𝑒

𝜋∗

1

Policy-iteration:

• For episodes:
• Get  data

• ෠𝑄 ← Policy evaluation  (e.g, SARSA)

• Improvement step (e.g., 𝜀-epsilon-greedy)
Activation regularization term:



Deep RL Experiments

• Actor-critic algorithms:  DDPG (Lillicrap ‘15), TD3 (Fujimoto ‘18)

• Mujoco continuous control (Todorov ‘12)

• Goal: undiscounted sum of rewards (𝛾𝑒 = 1)

• Limited number of time-steps  (2e5 or less)

• Tested cases: 
• Discount regularization (and no 𝐿2)

• 𝐿2 regularization (and 𝛾 = 0.999 )



2.5e2 steps

1e5 steps

5e4 steps

𝛾 = 0.99

𝛾 = 0.99

𝛾 = 0.995

HalfCheetah-v2

Ant-v2

Hopper-v2

Discount Regularization
2e5 steps

Discount Regularization
Fewer steps

L2 Regularization
Fewer steps

L2 Regularization
2e5 steps

𝛾 = 0.8



Conclusions

• Discount  regularization in TD is equivalent to adding a regularizer term

• Regularization effectiveness is closely related to the data distribution and 
mixing rate.

• Generalization in deep RL is strongly affected by regularization 

• Future work – theory needed

Thanks for listening 


