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Imperfect-information games



Extensive form

Metrics of game size:

• Sequences: 4 + 2 = 6

• Terminal nodes: 6

In general:

“Coin Toss” [Brown & Sandholm ‘17]
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Information sets



Convergence rate Iteration time Space* Speed in practice**

Modern variants of 
Counterfactual Regret 
Minimization (CFR) 
Zinkevich et al. ‘07;
Brown & Sandholm ‘19

O(1/ε2) O(# terminal nodes) 
in worst case;
O(# sequences)
w/ game-specific ideas

O(# sequences) Really fast

First-order methods
Hoda et al. ‘10;
Kroer et al. ’18

O(1/ε) or even 
O(log(1/ε))
[Gilpin et al. ‘12]

O(# terminal nodes) 
in worst case;
O(# sequences)
w/ game-specific ideas

O(# sequences) Almost as fast as 
modern CFR variants

Linear programming
Koller et al. ‘94

O(polylog(1/ε)) poly(# terminal nodes) poly(# terminal nodes) Fast

Our contribution 
Improvements to the 
LP method

O(log2(1/ε)) O(# terminal nodes) 
in worst case; 
Õ(# sequences) 
in many practical cases

O(# terminal nodes) 
in worst case; 
Õ(# sequences) 
in many practical cases

Really fast

Solving (zero-sum) imperfect-
information games

*assuming payoff matrix given implicitly
**assuming scalability for memory



Extensive-form games as LPs 
[Koller et al. ’94]

• Sequence-form bilinear saddle-point problem

• Dual of inner minimization ⇒ LP

– nnz(A) = # terminal nodes; A = payoff matrix

– nnz(B) = # P1 sequences

– nnz(C) = # P2 sequences
Not great…



Fast linear programming:
[Yen et al., 2015]

• Iteration time: O(nnz(constraint matrix))

• Convergence rate: O(log2(1/ε))



Fast linear programming:
Adapting to Games

• Iteration time: O(nnz(constraint matrix))

• Convergence rate: O(log2(1/ε))

• Problem: Returns an infeasible solution

• Solution: Normalize strategy after returning

• Theorem: This doesn’t hurt convergence 
substantially

• Iteration time: O(# terminal nodes)



Factoring the payoff matrix

Suppose the payoff matrix A were factorable…

Then:

Goal: Given A implicitly, factor it. 



What about low-rank factorization?

A  =
0

+=

Rank 1Two subproblems

e.g., singular vector decomposition (SVD)



Factorization algorithm

Idea: Think about singular vector 
decomposition, and adapt it

When ‖ ⋅ ‖ is the 2-norm, this is power iteration

How to solve it? 



Exact Solutions to ---------------------------

• 2-norm: v = Au (power iteration)
• 1-norm: Meng & Xu ’12
• 0-norm:

Is the 1-norm better because it is convex?
Not really… the overall factorization problem is NP-
hard no matter what [Gillis and Vasasvis ‘18]

Key: 0-norm computation can be done implicitly! 
(i.e., without storing whole payoff matrix!)



So, what have we managed?

Matrix factorization ⇒ much sparser LP
• Best case: # nonzero elements = O(# sequences)
• Upper triangular matrices (e.g. Poker): Õ(# sequences)

Does it work in practice?
Yes!
• Experiment 1: Wide variety of games

– Some games factorable, some not
– LP solver faster than CFR in all cases
– Commercial solver (Gurobi) faster than Yen et al., despite 

theoretical guarantees



So, what have we managed?

Matrix factorization ⇒ much sparser LP
• Best case: # nonzero elements = O(# sequences)
• Upper triangular matrices (e.g. Poker): Õ(# sequences)

Does it work in practice?
Yes!
• Experiment 2: No-limit Texas Hold’em river endgames

– size of payoff matrix reduced >50x
– memory usage of LP solver reduced by ~20x, time usage 

by ~5x
– now feasible as an alternative to poker-specific CFR



Experiment 2



So, what have we managed?

• LP algorithm for game solving with good 
theoretical guarantees and strong practical 
performance

• Moral/Takeaway: LP can be practical for 
solving even very large games!



Thank you!


