Sparsified Linear Programming for
Zero-Sum Equilibrium Finding

Brian Zhang! and
Tuomas Sandholm1234

1 Carnegie Mellon University
2 Strategic Machine, Inc.
3 Strategy Robot, Inc.
4 Optimized Markets, Inc.

Imperfect-information games

o|=|T|lo|mmO|O|m| =
o
|
|

Metrics of game size:
* Sequences:4+2=6
 Terminal nodes: 6

-1 +1 +1 -1

“Coin Toss” [Brown & Sandholm ‘17]

In general:
\/# terminal nodes < # sequences
< 2(# terminal nodes)

Solving (zero-sum) imperfect-
information games

Convergence rate

Iteration time

Space*

Speed in practice**

Modern variants of
Counterfactual Regret
Minimization (CFR)
Zinkevich et al. ‘07;
Brown & Sandholm ‘19

First-order methods
Hoda et al. ‘10;
Kroer et al.’18

Linear programming
Koller et al. ‘94

Our contribution
Improvements to the
LP method

0(1/€?)

or even
O(log(1/¢))
[Gilpin et al. “12]

O(polylog(1/g))

O(log*(1/g))

in worst case;
O(# sequences)
w/ game-specific ideas

in worst case;
O(# sequences)
w/ game-specific ideas

poly(# terminal nodes)

in worst case;
O(# sequences)
in many practical cases

O(# sequences)

O(# sequences)

poly(# terminal nodes)

in worst case;
O(# sequences)
in many practical cases

Really fast

Fast

Really fast

*assuming payoff matrix given implicitly

**assuming scalability for memory

Extensive-form games as LPs
[Koller et al. "94]

* Sequence-form bilinear saddle-point problem

maxminz? Ay st. Bxr=b, Cz=-c
x>0 y>0

* Dual of inner minimization = LP

max clz st. Br=b Clz< Alx
x>0,z

— nnz(A) = # terminal nodes; A = payoff matrix

— nnz(B) = # P1 sequences ‘\
— nnz(C) = # P2 sequences

Not great...

Fast linear programming
[Yen et al., 2015]

* |teration time: O(nnz(constraint matrix))
* Convergence rate: O(log?(1/¢))

Fast linear programming:
Adapting to Games

* |teration time:

* Convergence rate: O(log?(1/¢))

* Problem: Returns an infeasible solution

e Solution: Normalize strategy after returning

* Theorem: This doesn’t hurt convergence
substantially

Theorem 2. Suppose x1,p = (x, z) is an infeasible solution
to (1) such that d((z, z),S) < &, where S is the set of opti-
mal solutions to (1). Then the above normalization yields a
(feasible) strategy with exploitability at most en*|| A||so.

Factoring the payoff matrix

Suppose the payoff matrix A were factorable...

A=A+Uuv”
Then:
max ¢l z st. Bxr=b Clz< Al

x>0,z l

max ¢’z st. Br=b C'z<Vw+ AT.’JZ, Ul =w

x>0,z,w

Goal: Given A implicitly, factor it.

What about low-rank factorization?

e.g., singular vector decomposition (SVD)

/)

Two subproblems Rank 1

Factorization algorithm

ldea: Think about singular vector
decomposition, and adapt it

Algorithm 2 Matrix factorization Algorithm 3 Approximating argmin,, [|A — uov” ||

Input: matrix A € R™*™, norm ||-|| on matrices
Output: matrices U € R™*" and V € R"*"

1: set U and V' to be empty matrices

2: loop

Input: matrix A € R”™*"
Output: vectors u, v.

1: make an initial guess for u

3: w,v <« argmin, [|A —uv”|| i 10(:}) argmin, [|A — uT||
4: if ||lu|lo > 1 and ||v[[o > 1 then 4 oy argminv 1A — T
5: U« [U,u] ¢

6: V « [V, v]

7: A A—wT

When || - || is the 2-norm, this is power iteration

How to solve it?

Exact Solutions to argmin || A — uvTHp

(V)
e 2-norm: v = Au (power iteration)
* 1-norm: Meng & Xu 12
* 0-norm: Vj = mode {Aw/uz . Uy # 0}

Is the 1-norm better because it is convex?

Not really... the overall factorization problem is NP-
hard no matter what [Gillis and Vasasvis ‘18]

Key: O-norm computation can be done implicitly!
(i.e., without storing whole payoff matrix!)

So, what have we managed?

Matrix factorization = much sparser LP
* Best case: # nonzero elements = O(# sequences)
« Upper triangular matrices (e.g. Poker): O(# sequences)

Does it work in practice?
Yes!

 Experiment 1: Wide variety of games
— Some games factorable, some not
— LP solver faster than CFR in all cases

— Commercial solver (Gurobi) faster than Yen et al., despite
theoretical guarantees

So, what have we managed?

Matrix factorization = much sparser LP
* Best case: # nonzero elements = O(# sequences)
« Upper triangular matrices (e.g. Poker): O(# sequences)

Does it work in practice?
Yes!

* Experiment 2: No-limit Texas Hold’em river endgames
— size of payoff matrix reduced >50x

— memory usage of LP solver reduced by ~20x, time usage
by ~5x
— now feasible as an alternative to poker-specific CFR

Nash gap (bb)

Experiment 2

Convergence in River Endgame 7

lDE .

lDI} i

lD—E i

lﬂ—ﬂ- i

lG—E i

— Simplex

Barrier

\

—— Poker-specific DCFR
—— Game-independent DCFR (estimated)

=100

0

100
wall clock time (s)

T T
200 300

So, what have we managed?

* LP algorithm for game solving with good
theoretical guarantees and strong practical
performance

* Moral/Takeaway: LP can be practical for
solving even very large games!

Thank youl!

