Sparsified Linear Programming for Zero-Sum Equilibrium Finding

Brian Zhang¹ and Tuomas Sandholm¹²³⁴

- ¹ Carnegie Mellon University
 - ² Strategic Machine, Inc.
 - ³ Strategy Robot, Inc.
 - ⁴ Optimized Markets, Inc.

Imperfect-information games

Extensive form

Metrics of game size:

- *Sequences*: 4 + 2 = 6
- Terminal nodes: 6

"Coin Toss" [Brown & Sandholm '17]

In general:

$$\sqrt{\# \text{ terminal nodes}} \le \# \text{ sequences}$$

 $\le 2(\# \text{ terminal nodes})$

Solving (zero-sum) imperfectinformation games

	Convergence rate	Iteration time	Space*	Speed in practice**
Modern variants of Counterfactual Regret Minimization (CFR) Zinkevich et al. '07; Brown & Sandholm '19	O(1/ε²)	O(# terminal nodes) in worst case; O(# sequences) w/ game-specific ideas	O(# sequences)	Really fast
First-order methods Hoda et al. '10; Kroer et al. '18	$O(1/\epsilon)$ or even $O(\log(1/\epsilon))$ [Gilpin et al. '12]	O(# terminal nodes) in worst case; O(# sequences) w/ game-specific ideas	O(# sequences)	Almost as fast as modern CFR variants
Linear programming Koller et al. '94	O(polylog(1/ε))	poly(# terminal nodes)	poly(# terminal nodes)	Fast
Our contribution Improvements to the LP method	O(log ² (1/ε))	O(# terminal nodes) in worst case; Õ(# sequences) in many practical cases	O(# terminal nodes) in worst case; Õ(# sequences) in many practical cases	Really fast

^{*}assuming payoff matrix given implicitly

^{**}assuming scalability for memory

Extensive-form games as LPs [Koller et al. '94]

Sequence-form bilinear saddle-point problem

$$\max_{x>0} \min_{y>0} x^T A y \quad \text{s.t.} \quad Bx = b, \quad Cx = c$$

Dual of inner minimization ⇒ LP

$$\max_{x \ge 0, z} c^T z \quad \text{s.t.} \quad Bx = b, \quad C^T z \le A^T x$$

- -nnz(A) = # terminal nodes; A = payoff matrix
- -nnz(B) = #P1 sequences
- -nnz(C) = #P2 sequences

Not great...

Fast linear programming [Yen et al., 2015]

- Iteration time: O(nnz(constraint matrix))
- Convergence rate: $O(\log^2(1/\epsilon))$

Fast linear programming: Adapting to Games

- Iteration time: O(# terminal nodes)
- Convergence rate: $O(log^2(1/\epsilon))$
- Problem: Returns an infeasible solution
- Solution: Normalize strategy after returning
- Theorem: This doesn't hurt convergence substantially

Theorem 2. Suppose $x_{\text{LP}} = (x, z)$ is an infeasible solution to (1) such that $d((x, z), S) \leq \varepsilon$, where S is the set of optimal solutions to (1). Then the above normalization yields a (feasible) strategy with exploitability at most $\varepsilon n^4 ||A||_{\infty}$.

Factoring the payoff matrix

Suppose the payoff matrix A were factorable...

$$A = \hat{A} + UV^T$$

Then:

$$\max_{x \ge 0, z} c^T z \quad \text{s.t.} \quad Bx = b, \quad C^T z \le A^T x$$

$$\max_{x>0,z,w} c^T z$$
 s.t. $Bx = b, C^T z \le V w + \hat{A}^T x, U^T x = w$

Goal: Given A implicitly, factor it.

What about low-rank factorization?

e.g., singular vector decomposition (SVD)

Factorization algorithm

Idea: Think about singular vector decomposition, and adapt it

```
Algorithm 2 Matrix factorizationInput: matrix A \in \mathbb{R}^{m \times n}, norm \|\cdot\| on matricesOutput: matrices U \in \mathbb{R}^{m \times r} and V \in \mathbb{R}^{n \times r}1: set U and V to be empty matrices2: loop3: u, v \leftarrow \operatorname{argmin}_{u,v} \|A - uv^T\|4: if \|u\|_0 > 1 and \|v\|_0 > 1 then5: U \leftarrow [U, u]6: V \leftarrow [V, v]7: A \leftarrow A - uv^T
```

```
Algorithm 3 Approximating \operatorname{argmin}_{u,v} \|A - uv^T\|

Input: \operatorname{matrix} A \in \mathbb{R}^{m \times n}

Output: vectors u, v.

1: make an initial guess for u

2: loop

3: v \leftarrow \operatorname{argmin}_v \|A - uv^T\|

4: u \leftarrow \operatorname{argmin}_u \|A - uv^T\|
```

When $\|\cdot\|$ is the 2-norm, this is power iteration

How to solve it?

Exact Solutions to $\underset{v}{\operatorname{argmin}} \|A - uv^T\|_p$

- 2-norm: v = Au (power iteration)
- 1-norm: Meng & Xu '12
- **0-norm:** $v_j = \text{mode} \{A_{ij}/u_i : u_i \neq 0\}$

Is the 1-norm better because it is convex?

Not really... the overall factorization problem is NP-hard no matter what [Gillis and Vasasvis '18]

Key: 0-norm computation can be done *implicitly*! (i.e., without storing whole payoff matrix!)

So, what have we managed?

Matrix factorization ⇒ much sparser LP

- Best case: # nonzero elements = O(# sequences)
- Upper triangular matrices (e.g. Poker): Õ(# sequences)

Does it work in practice? Yes!

- Experiment 1: Wide variety of games
 - Some games factorable, some not
 - LP solver faster than CFR in all cases
 - Commercial solver (Gurobi) faster than Yen et al., despite theoretical guarantees

So, what have we managed?

Matrix factorization ⇒ much sparser LP

- Best case: # nonzero elements = O(# sequences)
- Upper triangular matrices (e.g. Poker): Õ(# sequences)

Does it work in practice? Yes!

- Experiment 2: No-limit Texas Hold'em river endgames
 - size of payoff matrix reduced >50x
 - memory usage of LP solver reduced by ~20x, time usage by ~5x
 - now feasible as an alternative to poker-specific CFR

Experiment 2

So, what have we managed?

- LP algorithm for game solving with good theoretical guarantees and strong practical performance
- Moral/Takeaway: LP can be practical for solving even very large games!

Thank you!