
Brian Zhang1 and
Tuomas Sandholm1 2 3 4

1 Carnegie Mellon University
2 Strategic Machine, Inc.

3 Strategy Robot, Inc.
4 Optimized Markets, Inc.

Sparsified Linear Programming for
Zero-Sum Equilibrium Finding

Imperfect-information games

Extensive form

Metrics of game size:

• Sequences: 4 + 2 = 6

• Terminal nodes: 6

In general:

“Coin Toss” [Brown & Sandholm ‘17]

C

P1 P1

P2 P2

+0.5 -0.5

-1 +1 +1 -1

Information sets

Convergence rate Iteration time Space* Speed in practice**

Modern variants of
Counterfactual Regret
Minimization (CFR)
Zinkevich et al. ‘07;
Brown & Sandholm ‘19

O(1/ε2) O(# terminal nodes)
in worst case;
O(# sequences)
w/ game-specific ideas

O(# sequences) Really fast

First-order methods
Hoda et al. ‘10;
Kroer et al. ’18

O(1/ε) or even
O(log(1/ε))
[Gilpin et al. ‘12]

O(# terminal nodes)
in worst case;
O(# sequences)
w/ game-specific ideas

O(# sequences) Almost as fast as
modern CFR variants

Linear programming
Koller et al. ‘94

O(polylog(1/ε)) poly(# terminal nodes) poly(# terminal nodes) Fast

Our contribution
Improvements to the
LP method

O(log2(1/ε)) O(# terminal nodes)
in worst case;
Õ(# sequences)
in many practical cases

O(# terminal nodes)
in worst case;
Õ(# sequences)
in many practical cases

Really fast

Solving (zero-sum) imperfect-
information games

*assuming payoff matrix given implicitly
**assuming scalability for memory

Extensive-form games as LPs
[Koller et al. ’94]

• Sequence-form bilinear saddle-point problem

• Dual of inner minimization ⇒ LP

– nnz(A) = # terminal nodes; A = payoff matrix

– nnz(B) = # P1 sequences

– nnz(C) = # P2 sequences
Not great…

Fast linear programming:
[Yen et al., 2015]

• Iteration time: O(nnz(constraint matrix))

• Convergence rate: O(log2(1/ε))

Fast linear programming:
Adapting to Games

• Iteration time: O(nnz(constraint matrix))

• Convergence rate: O(log2(1/ε))

• Problem: Returns an infeasible solution

• Solution: Normalize strategy after returning

• Theorem: This doesn’t hurt convergence
substantially

• Iteration time: O(# terminal nodes)

Factoring the payoff matrix

Suppose the payoff matrix A were factorable…

Then:

Goal: Given A implicitly, factor it.

What about low-rank factorization?

A =
0

+=

Rank 1Two subproblems

e.g., singular vector decomposition (SVD)

Factorization algorithm

Idea: Think about singular vector
decomposition, and adapt it

When ‖ ⋅ ‖ is the 2-norm, this is power iteration

How to solve it?

Exact Solutions to ---------------------------

• 2-norm: v = Au (power iteration)
• 1-norm: Meng & Xu ’12
• 0-norm:

Is the 1-norm better because it is convex?
Not really… the overall factorization problem is NP-
hard no matter what [Gillis and Vasasvis ‘18]

Key: 0-norm computation can be done implicitly!
(i.e., without storing whole payoff matrix!)

So, what have we managed?

Matrix factorization ⇒ much sparser LP
• Best case: # nonzero elements = O(# sequences)
• Upper triangular matrices (e.g. Poker): Õ(# sequences)

Does it work in practice?
Yes!
• Experiment 1: Wide variety of games

– Some games factorable, some not
– LP solver faster than CFR in all cases
– Commercial solver (Gurobi) faster than Yen et al., despite

theoretical guarantees

So, what have we managed?

Matrix factorization ⇒ much sparser LP
• Best case: # nonzero elements = O(# sequences)
• Upper triangular matrices (e.g. Poker): Õ(# sequences)

Does it work in practice?
Yes!
• Experiment 2: No-limit Texas Hold’em river endgames

– size of payoff matrix reduced >50x
– memory usage of LP solver reduced by ~20x, time usage

by ~5x
– now feasible as an alternative to poker-specific CFR

Experiment 2

So, what have we managed?

• LP algorithm for game solving with good
theoretical guarantees and strong practical
performance

• Moral/Takeaway: LP can be practical for
solving even very large games!

Thank you!

