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Stochastic multi-armed bandit

Problem formulation
A stochastic multi-armed bandit is a collection of distributions
v=(P1,Pa,...,Pxk), where K is the number of the arms.
In each period t € [T]:
@ Player picks arm i(t) € A.

@ Player observes reward Xj(y) : ~ Pj(y) for the chosen arm.

Learning policy
A policy 7 : (t, A1, X1,...,At—1, Xt—1) — [K] is characterised by,

I(t) = ﬂ-(ta i(l)vxi(l),h T 7i(t - 1)7Xi(t71),t71)7 t=1,---,T

The player can only use the past observations in current decisions.
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The learning objective

Objective

Minimize the expected cumulative regret

n

Z(Xi*,t - Xi(t),t)

t=1

n

K
=D (1" = i) = )_ AE[Tin]
i=1

t=1

Rp=E

where i is the mean of each arm, i* = arg max[u;], A; = p* — p; and

Tin = > t=1 Liito)=iy
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Some applications require a trade-off between risk and return.
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Mean-variance multi-armed bandit

Definition 1 (Mean-Variance)

The mean-variance of an arm i with mean p;, variance a,-2 and coefficient
absolute risk tolerance p > 0 is defined as

MV; = ppij — o7

Definition 2 (Empirical Mean-Variance)

Suppose we have i.i.d. samples {X;;};_; from the distribution v;, the
empirical mean-variance is defined as

— . "2
MVi,s = PUi;s — O ¢

)

AD ~ .. . .
where 67 and fi;s are empirical variance and mean respectively.
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The learning objective

For a given policy 7, and its corresponding performance over n rounds
{Z:,t =1,2,...,n}. We define its empirical mean-variance as

MV, (7) = pfin(m) — 85(r)
where

~ 1 u ~2 1 ~ 2
pa(m) = 3" Ze and 62(n) = - 3 (Z— fn(m))2.
t=1

n

Definition 3 (Regret)

The expected regret of a policy 7(-) over n rounds is defined as

E[Rn(m)] = n (MV1 — E [MV(r)] )

where we assume the first arm is the best arm.
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The variances

Law of total variance

Var(reward) = E[Var(reward|arm)] + Var(E[reward|arm])
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Figure 1. Reward Process
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Pseudo-regret

Definition 4

The expected pseudo-regret for a policy 7(+) over n rounds is defined as

E[Rn(7)] ZE[T,,,]A+ ZZE[T,HTJ,,]I’

i=1 j#i

where A; = 02 — 02 — p(u; — 1) is the gap between MV; and MV, and

[';j is the gap between p; and p;.

Lemma 1l

The difference between the expected regret and the expected
pseudo-regret can be bounded as follows:

K
E [Ro(m)] < E[Ro(m)] +33 o
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-
Pseudo-regret

Simplification of pseudo-regret

K K
1
S ST T <23 BTl P, o
i=2

i=1 j£i

where F%max = max{(ui — p;)?:j=1,...,K}.

By applying Definition 4, Lemma 1 and Eqn. (1), it suffices to bound the
expected number of pulls of suboptimal arms E[T; ,].
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-
Thompson Sampling

True reward distributions are: N(1,3),N(3,0.1), N(3.3,4)

0.4 A
>.O.3 / t=0 t= 0
20, / ~am1 — Samples: (1.30,1.22,—0.07)
o / ~am3 5 Play arm 1
o J k — Get reward —1.44
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Reward
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Thompson Sampling

True reward distributions are: N(1,3),N(3,0.1), N(3.3,4)
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-
Thompson Sampling

True reward distributions are: N(1,3), N (3,0.1),N(3.3,4)

15 \ "
N A t=10

210 i \( ‘::21 — Samples: (—0.24,2.15,3.23)
g J‘ “ /| -amz — Play arm 2

05 i — Get reward 2.12
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TS algorithm for mean learning

Algorithm 1 Thompson Sampling for Mean Learning

1: Input: o =0,Tio=0,ai0=3,0Bi0=3
2: foreacht=1,2..., do
3. Sample 6; (t) from N (i t—1,1/(Tie—1 + 1)).

4. Play arm i (t) = argmax; p0; (t) — 203; 1 and observe Xj) ;
5: (fige),er Tige),er Qige), 05 Bige),t) =

6: Update(fi(e),e—15 Ti(e),t—15 Qi(e),t—15 Bi(e),e—15 Xice),¢)
7. end for
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-
Regret bound

Theorem 1

If p > max {a%/l’,- =12, K}, the asymptotic expected regret
incurredd by MTS for mean-variance Gaussian bandits satisfies

— E[R,(MTS)] p?

K
2
i, T < > oy B+ 2nad)

Remark 1 (The bound)

Since A; = a,-2 — 0% + pl1,i, as p tends to +00, we observe that

i E[R, (MTS)] _
m —,——
n—00 plogn

7

This bound is near-optimal according to [Agrawal and Goyal, 2012].
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TS algorithm for variance learning

Algorithm 2 TS for Variance Learning

BN 1 1
1: Input: Hio = 0, T,"o =0, Qjo = 5,,3,'70 = 5.

2: foreacht=1,2..., do
3:  Sample 7(t) from Gamma (@ ¢—1, 5j 1)
4. Play arm i(t) = arg maxie[k] pfli,e—1 — 1/7i (t) and observe Xi(;) ¢
5. (fige),e Ti(e),e> Qi(e),es Bie),t) =

Update(fiice),e—15 Tie),e—15 Qi(e),e—15 Bi(e),e—15 Xi(e),¢)
6: end for
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-
Regret bound

Theorem 2

Let h(x) = 3(x — 1 —logx). If p < min{A;/T;: A;/T; > 0}, the
asymptotic regret incurred by VTS for mean-variance Gaussian bandits
satisfies p

_ E[R VTS) )

T egn = 2 h() 2/01 (A7 2 imar) -

i=

Remark 2 (Order optimality)

Vakili and Zhao (2015) proved that the expected regret of any consistent
algorithm is Q ((log n)/A?) where A = minjz1 A;. Since

h(x) = (x — 1)?/4 4+ o((x — 1)) as x — 1,

MTS and VTS are order optimal in both n and A.

v
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TS algorithm for mean-variance learning

Algorithm 3 Thompson Sampling for Mean-Variance bandits (MVTS)
1: Input: 0i0=0,T;o=0,0ai0=3,08i0= 3
2: foreacht=1,2,..., do

3:  Sample 7;(t) from Gamma(c; t—1,Bit—1)-

4: Sample 6;(t) from N(fjt—1,1/(Tit—1 + 1))

5. Play arm i(t) = arg max;¢c[x) p0i(t) — 1/7i(t) and observe Xj()
6: (ﬂi(t),t, Ti(t),tv ai(t),t»ﬁi(t),t) =

7: Update(fice),e—15 Tie),e—15 Qi(e),e—15 Bi(e),e—15 Xi(e),¢)

8: end for

Qiuyu Zhu, Vincent Y. F. Tan TS Algorithms for Mean-Variance Bandits ICML 2020 15/23



Hierarchical structure of Thompson samples

1,1, ~ N (i 02/ Tie) 2Bit/07 ~ X34

A 4 A 4

Oie ~ N (i1, 1/ Tie)| e ~ Gamma(ae, Bt

mi,t = pei,t - 1/7'i,t

Figure 2: Hierarchical structure of the mean-variance Thompson samples in
MVTS.
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-
Regret bound

Theorem 3

The asymptotic expected regret of MVTS for mean-variance Gaussian
bandits satisfies

— E[R,(MVTS)] & 2 1 )
I P U e e ) Gt

Remark 3

Regret bound of MV'TS particularizes to MTS and VTS when p — oo and
p — 0% respectively.

Hence, MV'TS is order optimal when p assumes these extremal values.
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Numerical Simulations

MV-LCB is the algorithm from [Sani et al., 2012],[Vakili and Zhao, 2016].
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Figure 3: p =103

The K = 15 Gaussian arms are set to the same as the experiments from
Sani et al. [2012] (i.e. u=(0.1,0.2,...,0.79), 02 = (0.05,0.34,...,0.85))
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Numerical Simulations

MV-LCB is the algorithm from [Sani et al., 2012],[Vakili and Zhao, 2016].
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Figure 4: p=1

The K = 15 Gaussian arms are set to the same as the experiments from
Sani et al. [2012] (i.e. u=(0.1,0.2,...,0.79), 02 = (0.05,0.34,...,0.85))
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Numerical Simulations

MV-LCB is the algorithm from [Sani et al., 2012],[Vakili and Zhao, 2016].
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Figure 5: p = 1000

The K = 15 Gaussian arms are set to the same as the experiments from
Sani et al. [2012] (i.e. u=(0.1,0.2,...,0.79), 02 = (0.05,0.34,...,0.85))
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Numerical Simulations
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Figure 6: Regret of Gaussian MV MAB with K =15
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Thank you for listening!

[=] 7% [=]
[=]

Q&A
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