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Stochastic multi-armed bandit

Problem formulation

A stochastic multi-armed bandit is a collection of distributions
ν = (P1,P2, . . . ,PK ), where K is the number of the arms.
In each period t ∈ [T ] :

1 Player picks arm i(t) ∈ A.

2 Player observes reward Xi(t),t ∼ Pi(t) for the chosen arm.

Learning policy

A policy π : (t,A1,X1, . . . ,At−1,Xt−1)→ [K ] is characterised by,

i(t) = π(t, i(1),Xi(1),1, · · · , i(t − 1),Xi(t−1),t−1), t = 1, · · · ,T

The player can only use the past observations in current decisions.
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The learning objective

Objective

Minimize the expected cumulative regret

Rn = E

[
n∑

t=1

(Xi∗,t − Xi(t),t)

]
=

n∑
t=1

(µ∗ − µi(t)) =
K∑
i=1

∆iE[Ti ,n]

where µi is the mean of each arm, i∗ = arg max[µi ], ∆i = µ∗ − µi and
Ti ,n =

∑n
t=1 1{i(t)=i}

Qiuyu Zhu, Vincent Y. F. Tan TS Algorithms for Mean-Variance Bandits ICML 2020 3 / 23



Motivation

Mean = (−1.44, 3.00, 3.12)
True reward distribution:

Arm 1 ∼ N (1, 3)

Arm 2 ∼ N (3, 0.1)

Arm 3 ∼ N (3.3, 4)

Some applications require a trade-off between risk and return.
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Mean-variance multi-armed bandit

Definition 1 (Mean-Variance)

The mean-variance of an arm i with mean µi , variance σ2i and coefficient
absolute risk tolerance ρ > 0 is defined as

MVi = ρµi − σ2i

Definition 2 (Empirical Mean-Variance)

Suppose we have i.i.d. samples {Xi ,t}st=1 from the distribution νi , the
empirical mean-variance is defined as

M̂Vi ,s = ρµ̂i ,s − σ̂2i ,s

where σ̂2i ,s and µ̂i ,s are empirical variance and mean respectively.
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The learning objective

For a given policy π, and its corresponding performance over n rounds
{Zt , t = 1, 2, . . . , n}. We define its empirical mean-variance as

M̂Vn(π) = ρµ̂n(π)− σ̂2n(π)

where

µ̂n(π) =
1

n

T∑
t=1

Zt , and σ̂2n(π) =
1

n

n∑
t=1

(Zt − µ̂n(π))2.

Definition 3 (Regret)

The expected regret of a policy π(·) over n rounds is defined as

E[Rn(π)] = n
(

MV1 − E
[
M̂Vn(π)

])
where we assume the first arm is the best arm.
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The variances

Law of total variance

Var(reward) = E[Var(reward |arm)] + Var(E[reward |arm])

Figure 1: Reward Process
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Pseudo-regret

Definition 4

The expected pseudo-regret for a policy π(·) over n rounds is defined as

E
[
R̃n(π)

]
=

K∑
i=2

E [Ti ,n] ∆i +
1

n

K∑
i=1

∑
j 6=i

E [Ti ,nTj ,n] Γ2
i ,j .

where ∆i = σ2i − σ21 − ρ(µi − µ1) is the gap between MVi and MV1, and
Γi ,j is the gap between µi and µj .

Lemma 1

The difference between the expected regret and the expected
pseudo-regret can be bounded as follows:

E [Rn(π)] ≤ E
[
R̃n(π)

]
+ 3

K∑
i=1

σ2i
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Pseudo-regret

Simplification of pseudo-regret

1

n

K∑
i=1

∑
j 6=i

E [Ti ,nTj ,n] Γ2
i ,j ≤ 2

K∑
i=2

E [Ti ,n] Γ2
i ,max (1)

where Γ2
i ,max = max{(µi − µj)2 : j = 1, . . . ,K}.

By applying Definition 4, Lemma 1 and Eqn. (1), it suffices to bound the
expected number of pulls of suboptimal arms E[Ti ,n].
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Thompson Sampling

True reward distributions are: N (1, 3),N (3, 0.1),N (3.3, 4)

t = 0
→ Samples: (1.30, 1.22,−0.07)
→ Play arm 1
→ Get reward −1.44
Update posteriors
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Thompson Sampling

True reward distributions are: N (1, 3),N (3, 0.1),N (3.3, 4)

t = 1
→ Samples: (0.17,−0.24, 0.65)
→ Play arm 3
→ Get reward 0.62
Update posteriors
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Thompson Sampling

True reward distributions are: N (1, 3),N (3, 0.1),N (3.3, 4)

t = 10
→ Samples: (−0.24, 2.15, 3.23)
→ Play arm 2
→ Get reward 2.12
Update posteriors
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TS algorithm for mean learning

Algorithm 1 Thompson Sampling for Mean Learning

1: Input: µ̂i ,0 = 0,Ti ,0 = 0, αi ,0 = 1
2 , βi ,0 = 1

2 .
2: for each t = 1, 2 . . ., do
3: Sample θi (t) from N (µ̂i ,t−1, 1/(Ti ,t−1 + 1)).
4: Play arm i (t) = arg maxi ρθi (t)− 2βi ,t−1 and observe Xi(t),t

5: (µ̂i(t),t ,Ti(t),t , αi(t),t , βi(t),t) =
6: Update(µ̂i(t),t−1,Ti(t),t−1, αi(t),t−1, βi(t),t−1,Xi(t),t)
7: end for
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Regret bound

Theorem 1

If ρ > max
{
σ21/Γi : i = 1, 2, . . . ,K

}
, the asymptotic expected regret

incurredd by MTS for mean-variance Gaussian bandits satisfies

lim
n→∞

E
[
R̃n (MTS)

]
log n

≤
K∑
i=2

2ρ2(
ρΓ1,i − σ21

)2 (∆i + 2Γ2
i ,max

)
Remark 1 (The bound)

Since ∆i = σ2i − σ21 + ρΓ1,i , as ρ tends to +∞, we observe that

lim
n→∞

E
[
R̃n (MTS)

]
ρ log n

≤
K∑
i=2

2

Γ1,i
.

This bound is near-optimal according to [Agrawal and Goyal, 2012].
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TS algorithm for variance learning

Algorithm 2 TS for Variance Learning

1: Input: µ̂i ,0 = 0,Ti ,0 = 0, αi ,0 = 1
2 , βi ,0 = 1

2 .
2: for each t = 1, 2 . . ., do
3: Sample τi (t) from Gamma (αi ,t−1, βi ,t−1).
4: Play arm i(t) = arg maxi∈[K ] ρµ̂i ,t−1 − 1/τi (t) and observe Xi(t),t

5: (µ̂i(t),t ,Ti(t),t , αi(t),t , βi(t),t) =
Update(µ̂i(t),t−1,Ti(t),t−1, αi(t),t−1, βi(t),t−1,Xi(t),t)

6: end for
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Regret bound

Theorem 2

Let h(x) = 1
2(x − 1− log x). If ρ ≤ min

{
∆i/Γi : ∆i/Γi > 0

}
, the

asymptotic regret incurred by VTS for mean-variance Gaussian bandits
satisfies

lim
n→∞

E
[
R̃n (VTS)

]
log n

≤
K∑
i=2

1

h
(
σ2i /σ

2
1

) (∆i + 2Γ2
i ,max

)
.

Remark 2 (Order optimality)

Vakili and Zhao (2015) proved that the expected regret of any consistent
algorithm is Ω

(
(log n)/∆2

)
where ∆ = mini 6=1 ∆i . Since

h(x) = (x − 1)2/4 + o((x − 1)2) as x → 1,

MTS and VTS are order optimal in both n and ∆.
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TS algorithm for mean-variance learning

Algorithm 3 Thompson Sampling for Mean-Variance bandits (MVTS)

1: Input: µ̂i ,0 = 0,Ti ,0 = 0, αi ,0 = 1
2 , βi ,0 = 1

2 .
2: for each t = 1, 2, . . ., do
3: Sample τi (t) from Gamma(αi ,t−1, βi ,t−1).
4: Sample θi (t) from N (µ̂i ,t−1, 1/(Ti ,t−1 + 1))
5: Play arm i(t) = arg maxi∈[K ] ρθi (t)− 1/τi (t) and observe Xi(t),t

6: (µ̂i(t),t ,Ti(t),t , αi(t),t , βi(t),t) =
7: Update(µ̂i(t),t−1,Ti(t),t−1, αi(t),t−1, βi(t),t−1,Xi(t),t)
8: end for
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Hierarchical structure of Thompson samples

M̂Vi ,t = ρθi ,t − 1/τi ,t

τi ,t ∼ Gamma(αi ,t , βi ,t)θi ,t ∼ N
(
µ̂i ,Ti,t

, 1/Ti ,t

)
µ̂i ,Ti,t

∼ N (µi , σ
2
i /Ti ,t) 2βi ,t/σ

2
i ∼ χ2

s−1

? ?

HHH
Hj

���
��

Figure 2: Hierarchical structure of the mean-variance Thompson samples in
MVTS.
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Regret bound

Theorem 3

The asymptotic expected regret of MVTS for mean-variance Gaussian
bandits satisfies

lim
n→∞

E
[
R̃n (MVTS)

]
log n

≤
K∑
i=2

max

{
2

Γ2
1,i

,
1

h(σ2i /σ
2
1)

}(
∆i + 2Γ2

i ,max

)
.

Remark 3

Regret bound of MVTS particularizes to MTS and VTS when ρ→∞ and
ρ→ 0+ respectively.

Hence, MVTS is order optimal when ρ assumes these extremal values.
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Numerical Simulations

MV-LCB is the algorithm from [Sani et al., 2012],[Vakili and Zhao, 2016].
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Figure 3: ρ = 10−3

The K = 15 Gaussian arms are set to the same as the experiments from
Sani et al. [2012] (i.e. µ = (0.1, 0.2, . . . , 0.79), σ2i = (0.05, 0.34, . . . , 0.85))
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Figure 4: ρ = 1

The K = 15 Gaussian arms are set to the same as the experiments from
Sani et al. [2012] (i.e. µ = (0.1, 0.2, . . . , 0.79), σ2i = (0.05, 0.34, . . . , 0.85))
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Numerical Simulations

MV-LCB is the algorithm from [Sani et al., 2012],[Vakili and Zhao, 2016].
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Figure 5: ρ = 1000

The K = 15 Gaussian arms are set to the same as the experiments from
Sani et al. [2012] (i.e. µ = (0.1, 0.2, . . . , 0.79), σ2i = (0.05, 0.34, . . . , 0.85))
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Numerical Simulations
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Figure 6: Regret of Gaussian MV MAB with K = 15
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Thank you for listening!

Q&A
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