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Neural Network Training

remarkably well!

From theoretical perspective training of neural networks is difficult
(NP-hardness, local/disconnected minima ...), but in practice works

Two key ingredients of success:

Over-parameterization
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(Stochastic) gradient descent




Training Landscape is indeed NICE

4.0

 SGD minima connected via piecewise
linear path with constant loss [Garipov et
al., 2018; Draxler et al., 2018]

 Mode connectivity proved assuming
properties of well-trained networks

(dropout/noise stability) [Kuditipudi et al.,
2019]




What do we show?

Theorem. (Informal) As neural network grows wider the
solutions obtained via SGD become increasingly more
dropout stable and barriers between local optima disappear.

Mean-field view: Two layers [Mei et al., 2019] Multiple layers [Araujo et al., 2019]

Quantitative bounds:

* independent of input dimension for two-layer networks, scale linearly for multiple layers

1
width

 change in loss scales with network width as \/

e number of training samples is just required to scale faster than the \/log(width)
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Warm-up: Two Layer Networks

Data: { (xla yl)? R (xn’ yn) } ~i.i.d. P (Rd X R>

N

A 1
Model: Jy(x,6) = — 21 ao (x;w;)

2
Goal: Minimize loss L\(0) = E { <y — %Ziv_l a,o (x;w,-)> },0 = (w,a)

» y bounded, V o(x,w) sub-gaussian
» 0 bounded and differentiable, V ¢ bounded and Lipschitz
o initialization of a; with bounded support



Recap: Dropout Stability

L,(0) =F { (y ;4 g a6 (x; w,-)>2}




Recap: Dropout Stability and Connectivity

1 & :
Ly(0) =E ()’ Mzai5<X;Wi)>

i=1
0 is ¢, - dropout stable if | Ly(0) — L,(0) | < €

0 and @' are ¢ - connected if there exists a continuous path connecting them
where the loss does not increase more than &




Main Results: Dropout Stability

e N = # neurons of full network e o = step size of SGD
e M = # neurons after dropout e D = dimension of weights
Theorem

Let 8% be obtained after k SGD iterations. Then, with probability
1— e %, forall k € [T/a], 8% is ep-dropout stable with

ep = KeKT” (\/lo\g/l\ﬂ/l—l—z Hva(y/D + |ogN—|—z)) .
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| log M
Change in loss scales as Y + \/a(D + log N)




Main Results: Dropout Stability

e N = # neurons of full network e o = step size of SGD
e M = # neurons after dropout e D = dimension of weights
Theorem

Let 8% be obtained after k SGD iterations. Then, with probability
1— e %, forall k € [T/a], 8% is ep-dropout stable with

ep = KeKT” (\/lo%+z Hva(y/D + |ogN—|—z)) .

~1
. Loss change vanishes as o < (\/D + log N) and M > 1

e M does not need to scale with N or D



Main Results: Connectivity

Theorem

Let 8% be obtained after k SGD iterations using {(xj,yj)}j-‘:o ~ P,
and (0')%" after k' SGD iterations using {(fo,ny)}J’-‘;O ~ P. Then,
with probability 1 — e=2°, for all k € [T /a] and k' € [T'/al], 6%
and (0")%" are ec-connected with

cC = KeKmax(T,T/)3 (\/lo\g/%—l—z | \/&(\/D—I— |OgN—|—Z)) |




Main Results: Connectivity

Theorem

Let 8% be obtained after k SGD iterations using {(xj,yj)}J’-‘:O ~ P,
and (0')%" after k' SGD iterations using {(xjf,yjf)}j-‘;o ~ P. Then,
with probability 1 — e=2°, for all k € [T /a] and k' € [T'/al], 6%
and (0")%" are ec-connected with

cC = KeKmax(T,T/)3 (\/lo\g/%—l—z | \/&(\/D—I— |OgN—|—Z)) |

| log N
 Change in loss scales as N

++4/a(D + log N)




Main Results: Connectivity

Theorem
Let 8% be obtained after k SGD iterations using {(xj,yj)}J’.‘:O ~ P,
and (0')%" after k' SGD iterations using {(xjf,yjf)}j-io ~ P. Then,
with probability 1 — e=2°, for all k € [T /a] and k' € [T'/al], 6%
and (0")%" are ec-connected with

Eq = KeKmax(T,T/)3 (\/logN—l—z | \/&(\/D—I— |OgN—|—Z)) |

VN

| log N
 Change in loss scales as N

v/ a(D + log N)

 Can connect SGD solutions obtained from different training data
(but same data distribution) and different initialization



Proof Idea
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Discrete dynamics of SGD

Continuous dynamics of
gradient flow

. @*closeto Ni.id. particles that evolve with gradient flow
» L,(0) and L,,(0) concentrate to the same limit

» Dropout stability with M = N/2 = connectivity



Multilayer Case: Setup
Data: { (xl,yl), e (xn,yn) } ~iigq P (Rdx X IRdy>

1 1
Model: j}N(xa 0) — NWL+16L < (NWZGI (Wlx)> )

Goal: Minimize loss L\(0) = E { || y —ynx,0) H 2}

Online SGD: %! = 0"+ aN*V . || y; — §y (%1, 6%)

* y bounded

0, bounded and differentiable, V 6, bounded and Lipschitz
 |nitialization with bounded support

» W, and W, stay fixed (random features)



Multilayer Case: Dropout Stability

Dropout stability: loss does not change much if we remove part of neurons
from each layer (and suitably rescale remaining neurons).



Multilayer Case: Dropout Stability

L,,(0) := loss when we keep at most M neurons per layer

0 is ¢, - dropout stable if | Ly(0) — L,(0) | < €



Multilayer Case: Dropout Stability and Connectivity

L,,(0) := loss when we keep at most M neurons per layer

0 is ¢, - dropout stable if | Ly(0) — L,(0) | < €

0 and @' are ¢ - connected if there exists a continuous path connecting them
where the loss does not increase more than &




Multilayer Case: Results

e N = # neurons per layer of full network e o = step size of SGD
e M = max. # neurons per layer after dropout e D = max(dx, dy)
Theorem

Let @% be obtained after k SGD iterations, with k = T /a. Then,
w. p. 1 — e~ 0k is ep-dropout stable with

VD + z | \/log N |
NN TR \/5(\/D—I—IogN—|—z)).

ED — K(T, L) (




Multilayer Case: Results

e N = # neurons per layer of full network e o = step size of SGD
e M = max. # neurons per layer after dropout e D = max(dx, d,)
Theorem

Let O be obtained after k SGD iterations, with k = T /a. Then,
w. p. 1— e~ 0K is ep-dropout stable with

VD +z +/logN

ep = K(T,L | v/ ol D +logN+2z) | .
Let (6’)X" be obtained after k' SGD iterations, with k' = T'/a.
Then, w. p. 1 —e~%", 6 and (0')~ are ec-connected with

\/D—I—\Iorl\glN—l—z | \/5(\/D-|—IogN—|—z)).

EC — K(T, T,,L) (




Proof Challenges
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Discrete dynamics of SGD Continuous dynamics of

gradient flow

* |deal particles are no longer independent (weights in different layers are correlated)
 Bound on norm of weights during the training

 Bound maximum distance between SGD and ideal particles (JAraujo et al., 2019]
bounds the average distance)



Numerical Results
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Numerical Results
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Numerical Results

 CIFAR-10 dataset

* Pretrained VGG-16 features
* #layers =3

 Keep half of neurons
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—— error on path
----- upper bound




Numerical Results
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Conclusion

Over-parameterization + SGD = dropout stability & connectivity )




Thank You for Your Attention

Over-parameterization + SGD = dropout stability & connectivity |

. Linear

Position on Path




