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Neural Network Training

From theoretical perspective training of neural networks is difficult

(NP-hardness, local/disconnected minima …), but in practice works

remarkably well!


Two key ingredients of success: 

Over-parameterization (Stochastic) gradient descent



Training Landscape is indeed NICE

• SGD minima connected via piecewise 
linear path with constant loss [Garipov et 
al., 2018; Draxler et al., 2018]


• Mode connectivity proved assuming 
properties of well-trained networks 
(dropout/noise stability) [Kuditipudi et al., 
2019]




What do we show?

Theorem. (Informal) As neural network grows wider the 
solutions obtained via SGD become increasingly more 
dropout stable and barriers between local optima disappear.

Mean-field view: Two layers [Mei et al., 2019]  Multiple layers [Araujo et al., 2019] 


Quantitative bounds:  

• independent of input dimension for two-layer networks, scale linearly for multiple layers


• change in loss scales with network width as 


• number of training samples is just required to scale faster than the log(width)

1
width



• Local minima are globally optimal 
for deep linear networks and 
networks with more neurons than 
training samples


• Connected landscape if the 
number of neurons grows large 
(two-layer networks, energy gap 
exponential in input dimension)

Related Work

Strong assumptions on the model and poor scaling of parameters ︎😞




Warm-up: Two Layer Networks 

Data: {(x1, y1), …, (xn, yn)} ∼i.i.d. ℙ (ℝd × ℝ)

Goal: Minimize loss LN(θ) = 𝔼 {(y − 1
N ∑N

i=1 aiσ (x; wi))
2}, θ = (w, a)

Online SGD: θk+1 = θk + αN ∇θk((yk − 1
N ∑N

i=1 ak
i σ (xk; wk

i ))
2)

•  bounded,  sub-gaussian

•  bounded and differentiable,  bounded and Lipschitz

• initialization of  with bounded support

y ∇wσ(x, w)
σ ∇σ

ai

Model: ̂yN(x, θ) =
1
N

N

∑
i=1

aiσ (x; wi)



Recap: Dropout Stability

LM(θ) = 𝔼 (y −
1
M

M

∑
i=1

aiσ (x; wi))
2

 is  - dropout stable if  θ εD |LN(θ) − LM(θ) | ≤ εD



Recap: Dropout Stability and Connectivity

LM(θ) = 𝔼 (y −
1
M

M

∑
i=1

aiσ (x; wi))
2

 is  - dropout stable if  θ εD |LN(θ) − LM(θ) | ≤ εD

 and  are  - connected if there exists a continuous path connecting them

where the loss does not increase more than 
θ θ′ εC

εC



Main Results: Dropout Stability



Main Results: Dropout Stability

Change in loss scales as 
log M

M
+ α(D + log N)



Main Results: Dropout Stability

• Loss change vanishes as  and 


•  does not need to scale with  or 

α ≪ ( D + log N)
−1

M ≫ 1

M N D



Main Results: Connectivity



Main Results: Connectivity

• Change in loss scales as

log N

N
+ α(D + log N)



Main Results: Connectivity

• Change in loss scales as


• Can connect SGD solutions obtained from different training data 
(but same data distribution) and different initialization 

log N
N

+ α(D + log N)



Proof Idea

Discrete dynamics of SGD Continuous dynamics of

gradient flow

•  close to  i.i.d. particles that evolve with gradient flow


•  and  concentrate to the same limit


• Dropout stability with connectivity


θk N
LN(θ) LM(θ)

M = N/2 ⇒



Multilayer Case: Setup

Data: {(x1, y1), …, (xn, yn)} ∼i.i.d. ℙ (ℝdx × ℝdy)

Goal: Minimize loss LN(θ) = 𝔼 { y − ŷN(x, θ)
2}

Online SGD:  θk+1 = θk + αN2 ∇θk yk − ŷN (xk, θk)
2

Model:  ŷN(x, θ) =
1
N

WL+1σL (⋯( 1
N

W2σ1 (W1x))⋯)

•  bounded


•  bounded and differentiable,  bounded and Lipschitz

• initialization with bounded support


•  and  stay fixed (random features)

y
σℓ ∇σℓ

W1 WL+1



Multilayer Case: Dropout Stability
Dropout stability: loss does not change much if we remove part of neurons 
from each layer (and suitably rescale remaining neurons). 




Multilayer Case: Dropout Stability

loss when we keep at most  neurons per layerLM(θ) := M

 is  - dropout stable if  θ εD |LN(θ) − LM(θ) | ≤ εD



Multilayer Case: Dropout Stability and Connectivity

loss when we keep at most  neurons per layerLM(θ) := M

 is  - dropout stable if  θ εD |LN(θ) − LM(θ) | ≤ εD

 and  are  - connected if there exists a continuous path connecting them

where the loss does not increase more than 
θ θ′ εC

εC



Multilayer Case: Results



Multilayer Case: Results



Proof Challenges

Discrete dynamics of SGD Continuous dynamics of

gradient flow

• Ideal particles are no longer independent (weights in different layers are correlated)

• Bound on norm of weights during the training 

• Bound maximum distance between SGD and ideal particles ([Araujo et al., 2019] 

bounds the average distance)

•



Numerical Results

• CIFAR-10 dataset

• Pretrained VGG-16 features

• # layers = 3

• Keep half of neurons
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• Keep half of neurons



Numerical Results



Conclusion



Thank You for Your Attention


