

Low-Variance and Zero-Variance Baselines in Extensive-Form Games

Trevor Davis^{2,*}, Martin Schmid¹, Michael Bowling^{1,2}

Monte Carlo game solving

Extensive-form games (EFGs)

Monte Carlo game solving

Extensive-form games (EFGs)

Baseline functions - evaluating unsampled actions

Our Contribution

- Lower variance, faster convergence
- Provable zero-variance samples

Monte carlo evaluation

Unbiased updates at h

$$\hat{u}(h,a) = \frac{\mathbb{1}(h \to a)}{\Pr[h \to a]} u(z^t)$$

Monte Carlo evaluation

Unbiased updates at h

$$\hat{u}(h, a) = \frac{\mathbb{1}(h \to a)}{\Pr[h \to a]} u(z^t)$$

$$= \frac{\mathbb{1}(h \to a)}{\Pr[h \to a]} \hat{u}_b(h')$$

where $\hat{u}_b(h')\coloneqq\sum_{a'}\Pr[h'\to a']\hat{u}_b(h',a')$

Monte Carlo evaluation

Unbiased updates at h

$$\hat{u}(h, a) = \frac{\mathbb{1}(h \to a)}{\Pr[h \to a]} u(z^t)$$

$$= \frac{\mathbb{1}(h \to a)}{\Pr[h \to a]} \hat{u}_b(h')$$

where
$$\hat{u}_b(h')\coloneqq\sum_{a'}\Pr[h' o a']\hat{u}_b(h',a')$$

Unsampled actions: $\hat{u}(h,a)=0$

Baseline functions

$$b(h,a) \approx \mathbb{E}[u(h,a)]$$

Evaluation with baseline

Without baseline:

$$\hat{u}(h,a) = \frac{\mathbb{1}(h \to a)}{\Pr[h \to a]} \hat{u}(h')$$

$$\hat{u}(h') = \sum_{a'} \Pr[h' \to a'] \hat{u}(h', a')$$

Evaluation with baseline

Without baseline:

$$\hat{u}(h,a) = \frac{\mathbb{1}(h \to a)}{\Pr[h \to a]} \hat{u}(h') \qquad \qquad \hat{u}(h') = \sum_{a'} \Pr[h' \to a'] \hat{u}(h',a')$$

Baseline correction:

$$\hat{u}_b(h,a) = \frac{\mathbb{1}(h \to a)}{\Pr[h \to a]} \hat{u}_b(h') + \left(1 - \frac{\mathbb{1}(h \to a)}{\Pr[h \to a]}\right) b(h,a)$$

Evaluation with baseline

Without baseline:

$$\hat{u}(h,a) = \frac{\mathbb{1}(h \to a)}{\Pr[h \to a]} \hat{u}(h') \qquad \qquad \hat{u}(h') = \sum_{a'} \Pr[h' \to a'] \hat{u}(h',a')$$

Baseline correction:

$$\hat{u}_b(h,a) = \frac{\mathbb{1}(h \to a)}{\Pr[h \to a]} \hat{u}_b(h') + \left(1 - \frac{\mathbb{1}(h \to a)}{\Pr[h \to a]}\right) b(h,a)$$

$$\mathbb{E}[\dots] = 0 \qquad \text{(control variate)}$$

Theoretical results

Theorem 1: baseline-corrected values are unbiased:

$$\mathbb{E}[\hat{u}_b(h,a)] = \mathbb{E}[u(h,a)]$$

Theorem 2: each baseline-corrected value $\hat{u}_b(h,a)$ has variance bounded by a sum of squared prediction errors in the subtree rooted at a

$$\operatorname{Var}[\hat{u}_b(h, a)] \leq \frac{1}{\Pr[h \to a]} \sum_{\substack{h', a' \in \text{subtree}(h, a)}} \Pr[h, a \to h', a'] (b(h', a') - \mathbb{E}[u(h', a')])^2$$

Baseline function selection

We want
$$b(h,a) \approx \mathbb{E}[u(h,a)]$$

Learned history baseline:

We know
$$\mathbb{E}[\hat{u}_b(h,a)] = \mathbb{E}[u(h,a)]$$

Set b(h,a) to average of previous samples $\hat{u}_b(h,a)$

Baseline function selection

We want
$$b(h,a) \approx \mathbb{E}[u(h,a)]$$

Learned history baseline:

We know
$$\mathbb{E}[\hat{u}_b(h,a)] = \mathbb{E}[u(h,a)]$$

Set b(h,a) to average of previous samples $\hat{u}_b(h,a)$

Note: $\mathbb{E}[u(h,a)]$ depends on strategies – not stationary

 $\therefore b(h,a)$ is *not* an unbiased estimate of current expectation $\hat{u}_b(h,a)$ still unbiased

Baseline convergence evaluation

Leduc poker, Monte Carlo Counterfactual Regret Minimization (MCCFR+)

Predictive baseline

Updating with learned history baseline:

Optimal baseline depends on strategy update:

$$b(h, a) = \mathbb{E}[u(h, a)]$$

$$= \sum_{a'} \Pr[h' \to a'] \mathbb{E}[u(h', a')]$$

Predictive baseline

Updating with learned history baseline:

Optimal baseline depends on strategy update:

$$b(h, a) = \mathbb{E}[u(h, a)]$$
$$= \sum_{a'} \Pr[h' \to a'] \mathbb{E}[u(h', a')]$$

Use strategy to update baseline:

Recursively set

$$b(h, a) = \sum_{a'} \Pr[h' \to a'] b(h', a')$$

Zero-variance updates

If:

- We use the predictive baseline
- We sample public outcomes
- All outcomes are sampled at least once

Theorem: the baseline-corrected values $\hat{u}_b(h,a)$ have zero variance

Baseline variance evaluation

Leduc poker, Monte Carlo Counterfactual Regret Minimization (MCCFR+)

Conclusion

- Lower variance, faster convergence
- Provable zero-variance samples

