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Motivation: state-of-the-art models are not robust

CIFAR-10: 94.1 % — 7?7 %
CIFAR-100: 74.4 % — 7?7 %
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Motivation: state-of-the-art models are not robust

CIFAR-10: 94.1% — 73.0 % (21.1 % drop)
CIFAR-100: 74.4% —s 31.6 % (42.8 % drop)

ICML 2020 WDRO inference 3/18



Overviews

@ In this paper, we study Wasserstein distributionally robust optimization
(WDRO) to make models robust.

@ We develop a principled and tractable statistical inference method for
WDRO.

@ We formally present a locally perturbed data distribution and provide
WDRO inference when data are locally perturbed.
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Statistical learning problems

@ Many statistical learning problems can be expressed by an optimization
problem as follows:

hIQL R(Pgata, h) := ;g;‘{/zh(g)d}?dam(o_

@ Given observations zi, ..., z, ~ Pqata and the empirical distribution
P,:=n"13"" 4, the empirical risk minimization (ERM) can be
represented as

1L
0 3 H 2

@ A solution of (1) asymptotically minimizes the true risk, but it performs
poorly when the test data distribution is different from Pg...
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|
Wasserstein distributionally robust optimization (WDRO)

@ WDRO is the problem of learning a model minimizes the worst-case
risk over the Wasserstein ball:

inf sup R(Q, h),
heH QeMeapy.p(Pn)

worst-case risk

where M, ,(IP,) is the Wasserstein ball, a set of probability measures
whose p-Wasserstein metric from P, is less than «, > 0.
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Figure: Illustration of Wasserstein ball 91, ,(P»).

>> By the design of the local worst-case risk, a solution to WDRO can
avoid overfitting to P, and learn a robust model.
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-
Main challenges in WDRO

WDRO is a powerful framework to train robust models! However, there
are challenges.

© Exact computation of the worst-case risk is intractable except for
few simple settings.

- it is difficult to find the inner supremum of the risk over the
Wasserstein ball whose cardinality is infinity.

@ Even though we solve WDRO, we do not know any theoretical
properties of a solution (e.g. risk consistency).

— We solve these two problems in this paper!
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Wasserstein Distributionally Robust Optimization

Asymptotic equivalence between WDRO and penalty-based
methods

Let Ry (P, h) == supgeam,,. ,(p,) R(Q, h) and (a,) be a vanishing sequence. In
the following, we show that the worst-case risk can be approximated.

Theorem 1 (Informal; Approximation to local worst-case risk)

Let Z be an open and bounded subset of R?. For k € (0,1], assume that a
gradient of loss V ,h(z) is k-Hélder continuous and Eqa.(|V2hl|,) is bounded
below by some constant. Then for p € (1 + k,00), the following holds.

|R(Ba, ) + Vbl e = RIS (B, )| = Oplah™)

an,p

Gao et al. (2017, Theorem 2) obtained a similar result when Z = R?, yet our
boundedness assumption on Z is reasonable in a sense that real computers store
data in a finite number of states. Also, Theorem 1 is sharper.
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Wasserstein Distributionally Robust Optimization

Vanishing excess worst-case risk

Based on Theorem 1, for a vanishing sequence (a,), we propose to minimize the
following surrogate objective:

Rt (BPns h) i= R(Bn, h) + | Vhllp, e - ()

Qn, P
r ro — 3 ro
Let h5'°P = argming,c, REIP (P, h).

Theorem 2 (Informal; Excess worst-case risk bound)

With the assumptions in Theorem 1, suppose H is uniformly bounded. Then, for
p € (1 + k,00), the following holds.

C(H) V alP
Jn

Qn,p Qn,p nsP

RworSt(Pdatay l’_\'prop) _ ’:QL R(\;vorst(ﬁpdata’ h) — Op ( V Iog(n)a,l,+k> ,

where €(H) is the Dudley’s entropy integral.

Compared to Lee and Raginsky (2018), this form has the additional term
log(n)alt*, which can be thought as a payoff for the approximation.
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WDRO with locally perturbed data

Definition 3 (Locally perturbed data distribution)

For a dataset Z, = {z1,...,2,} and 8 > 0, we say [P}, is a B-locally
perturbed data distribution if there exists a set {z,...,z,} such that
P, = %27:1 6, and z! can be expressed as

/
z =2z + &,

for||ei|| < B and i € [n].

> Examples include denoising autoencoder (Vincent et al., 2010), Mixup
(Zhang et al., 2017), and adversarial training (Goodfellow et al., 2014).
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Wasserstein Distributionally Robust Optimization

Extends the previous results

Theorem 4 (Informal; Parallel to Theorem 1)

Let (B,) be a vanishing sequence and P!, be a (,-locally perturbed data
distribution. With the assumptions in Theorem 1 and for p € (1 + k, c0),
the following holds.

‘R(JP”,,,h)Jra,,HVZhHM . — RVt ) ‘ = 0,(at* v B,).

an,p

@ Theorem 4 extends Theorem 1 to the cases when data are locally
perturbed. The cost of perturbation is an additional error O(f3,),
which is negligible when 3, < O(altk).

@ A similar extension for Theorem 2 is provided in the paper.
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Numerical Experiments

Numerical Experiments

@ We conduct numerical experiments to demonstrate robustness of the
proposed method using image classification datasets.

@ We compare the following four methods:

o Empirical risk minimization (ERM)

Proposed method (WDRO)

Empirical risk minimization with the Mixup (MIXUP)

Proposed method with the Mixup (WDRO+MIX)

@ We use CIFAR-10 and CIFAR-100 datasets and train models using
clean images.
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Numerical Experiments

Numerical Experiments: Accuracy comparison

Table: Accuracy comparison of the four methods using the clean and noisy test
datasets with various training sample sizes. Average and standard deviation are
denoted by ‘averagetstandard deviation'.

SAMPLE CLEAN 1% SALT AND PEPPER NOISE

SIZE ERM WDRO MIXUP  WDRO+MIX ‘ ERM WDRO MIXUP WDRO+MIX
CIFAR-10

2500 773+08 77.1+07 814405 80.8+0.7 69.8+18 71.9+09 727+16 748+09
5000 833+04 83.0+03 86.7+0.2 85.6+0.3 752+14 774+05 764+17 79.6 £0.9
25000 92.2+0.2 91.4+0.1 933+0.1 92.4+0.1 83.3+0.8 858+05 821+1.7 86.2+0.3
50000 94.1+0.1 93.1+0.1 948+0.2 93.5+0.2 84.1+1.0 87.4+05 825+13 87.3+05
CIFAR-100

2500 33.8+1.0 346+1.7 389406 39.4+0.2 20.2+0.2 304+12 332+1.1 350+05
5000 452+09 43.7+07 499+0.2 495+04 37.0+08 381+11 394+13 423+0.7
25000 67.8+0.2 66.6+0.3 69.3+0.3 68.2+0.3 51.0+19 565408 496+1.0 55.8+0.4
50000 744+02 735+03 752402 73.8+0.3 51.9+13 621405 50.0+3.0 60.6 0.7

>> In most cases, the proposed methods (WDRO, WDRO+MIX) show
significantly better performance when test data are noisy.

ICML 2020 WDRO inference 14 /18



Numerical Experiments

Numerical Experiments: Accuracy comparison by noise

intensity

Table: The comparison of the accuracy reduction on various salt and pepper noise

intensities.

PROBABILITY OF

ERM WDRO MIXUP WDRO+MIX
NOISY PIXELS
CIFAR-10
1% 10.1+09 57+04 124+12 6.2+04
2% 21.1+19 132+05 243+1.4 127+0.8
4% 30.7+29 329+25 4354138 309+20
CIFAR-100
1% 225+13 114404 252425 13.2+0.7
2% 428+23 265+10 459434 29.7+£0.7
4% 61.7+1.4 500+09 639+20 53.5+0.9
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Numerical Experiments

Numerical Experiments: Gradient norm
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Figure: The box plots of the £,,-norm of the gradients when the number of
images used in training increases from 10 x 216 to 100 x 216,
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Numerical Experiments

Conclusion

@ We develop a principled and tractable statistical inference method
for WDRO.

@ We formally present a locally perturbed data distribution and develop
WDRO inference when data are locally perturbed.

@ For more details, ArXiv & Github links:
https://arxiv.org/abs/2006.03333
https://github.com/ykwon0407/wdro_local_perturbation
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