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Motivation: state-of-the-art models are not robust

CIFAR-10: 94.1 % → ?? %
CIFAR-100: 74.4 % → ?? %
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Motivation: state-of-the-art models are not robust

CIFAR-10: 94.1% → 73.0 % (21.1 % drop)
CIFAR-100: 74.4% → 31.6 % (42.8 % drop)
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Overviews

In this paper, we study Wasserstein distributionally robust optimization
(WDRO) to make models robust.

We develop a principled and tractable statistical inference method for
WDRO.

We formally present a locally perturbed data distribution and provide
WDRO inference when data are locally perturbed.
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Statistical learning problems

Many statistical learning problems can be expressed by an optimization
problem as follows:

inf
h∈H

R(Pdata, h) := inf
h∈H

∫
Z
h(ζ)dPdata(ζ).

Given observations z1, . . . , zn ∼ Pdata and the empirical distribution
Pn := n−1

∑n
i=1 δzi , the empirical risk minimization (ERM) can be

represented as

inf
h∈H

1

n

n∑
i=1

h(zi ). (1)

A solution of (1) asymptotically minimizes the true risk, but it performs
poorly when the test data distribution is different from Pdata.
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Wasserstein distributionally robust optimization (WDRO)

WDRO is the problem of learning a model minimizes the worst-case
risk over the Wasserstein ball:

inf
h∈H

sup
Q∈Mαn,p(Pn)

R(Q, h)︸ ︷︷ ︸
worst-case risk

,

where Mαn,p(Pn) is the Wasserstein ball, a set of probability measures
whose p-Wasserstein metric from Pn is less than αn > 0.
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Illustration of WDRO

In ERM,

inf
h∈H

1

n

n∑
i=1

h(zi )

In WDRO,

inf
h∈H

sup
Q∈Mαn,p(Pn)

R(Q, h)︸ ︷︷ ︸
worst-case risk

Figure: Illustration of Wasserstein ball Mαn,p(Pn).

B By the design of the local worst-case risk, a solution to WDRO can
avoid overfitting to Pn and learn a robust model.
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Main challenges in WDRO

WDRO is a powerful framework to train robust models! However, there
are challenges.

1 Exact computation of the worst-case risk is intractable except for
few simple settings.

- it is difficult to find the inner supremum of the risk over the
Wasserstein ball whose cardinality is infinity.

2 Even though we solve WDRO, we do not know any theoretical
properties of a solution (e.g. risk consistency).

→ We solve these two problems in this paper!
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Wasserstein Distributionally Robust Optimization

Asymptotic equivalence between WDRO and penalty-based
methods

Let Rworst
αn,p (Pn, h) := supQ∈Mαn,p(Pn) R(Q, h) and (αn) be a vanishing sequence. In

the following, we show that the worst-case risk can be approximated.

Theorem 1 (Informal; Approximation to local worst-case risk)

Let Z be an open and bounded subset of Rd . For k ∈ (0, 1], assume that a
gradient of loss ∇zh(z) is k-Hölder continuous and Edata(‖∇zh‖∗) is bounded
below by some constant. Then for p ∈ (1 + k ,∞), the following holds.∣∣∣R(Pn, h) + αn‖∇zh‖Pn,p∗ − Rworst

αn,p (Pn, h)
∣∣∣ = Op(α1+k

n ).

Gao et al. (2017, Theorem 2) obtained a similar result when Z = Rd , yet our
boundedness assumption on Z is reasonable in a sense that real computers store
data in a finite number of states. Also, Theorem 1 is sharper.
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Wasserstein Distributionally Robust Optimization

Vanishing excess worst-case risk

Based on Theorem 1, for a vanishing sequence (αn), we propose to minimize the
following surrogate objective:

Rprop
αn,p (Pn, h) := R(Pn, h) + αn‖∇zh‖Pn,p∗ . (2)

Let ĥpropαn,p = argminh∈HR
prop
αn,p (Pn, h).

Theorem 2 (Informal; Excess worst-case risk bound)

With the assumptions in Theorem 1, suppose H is uniformly bounded. Then, for
p ∈ (1 + k,∞), the following holds.

Rworst
αn,p (Pdata, ĥ

prop
αn,p )− inf

h∈H
Rworst
αn,p (Pdata, h) = Op

(
C(H) ∨ α1−p

n√
n

∨ log(n)α1+k
n

)
,

where C(H) is the Dudley’s entropy integral.

Compared to Lee and Raginsky (2018), this form has the additional term
log(n)α1+k

n , which can be thought as a payoff for the approximation.
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Wasserstein Distributionally Robust Optimization

WDRO with locally perturbed data

Definition 3 (Locally perturbed data distribution)

For a dataset Zn = {z1, . . . , zn} and β ≥ 0, we say P′
n is a β-locally

perturbed data distribution if there exists a set {z ′1, . . . , z ′n} such that
P′
n = 1

n

∑n
i=1 δz ′i and z ′i can be expressed as

z ′i = zi + ei ,

for ‖ei‖ ≤ β and i ∈ [n].

B Examples include denoising autoencoder (Vincent et al., 2010), Mixup
(Zhang et al., 2017), and adversarial training (Goodfellow et al., 2014).
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Wasserstein Distributionally Robust Optimization

Extends the previous results

Theorem 4 (Informal; Parallel to Theorem 1)

Let (βn) be a vanishing sequence and P′
n be a βn-locally perturbed data

distribution. With the assumptions in Theorem 1 and for p ∈ (1 + k ,∞),
the following holds.∣∣∣R(P′

n, h) + αn‖∇zh‖P′n,p∗ − Rworst
αn,p (Pn, h)

∣∣∣ = Op(α1+k
n ∨ βn).

Theorem 4 extends Theorem 1 to the cases when data are locally
perturbed. The cost of perturbation is an additional error O(βn),
which is negligible when βn ≤ O(α1+k

n ).

A similar extension for Theorem 2 is provided in the paper.
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Numerical Experiments

Numerical Experiments

We conduct numerical experiments to demonstrate robustness of the
proposed method using image classification datasets.

We compare the following four methods:

Empirical risk minimization (ERM)
Proposed method (WDRO)
Empirical risk minimization with the Mixup (MIXUP)
Proposed method with the Mixup (WDRO+MIX)

We use CIFAR-10 and CIFAR-100 datasets and train models using
clean images.
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Numerical Experiments

Numerical Experiments: Accuracy comparison

Table: Accuracy comparison of the four methods using the clean and noisy test
datasets with various training sample sizes. Average and standard deviation are
denoted by ‘average±standard deviation’.

Sample Clean 1% salt and pepper noise

size ERM WDRO MIXUP WDRO+MIX ERM WDRO MIXUP WDRO+MIX

CIFAR-10
2500 77.3± 0.8 77.1± 0.7 81.4± 0.5 80.8± 0.7 69.8± 1.8 71.9± 0.9 72.7± 1.6 74.8± 0.9
5000 83.3± 0.4 83.0± 0.3 86.7± 0.2 85.6± 0.3 75.2± 1.4 77.4± 0.5 76.4± 1.7 79.6± 0.9
25000 92.2± 0.2 91.4± 0.1 93.3± 0.1 92.4± 0.1 83.3± 0.8 85.8± 0.5 82.1± 1.7 86.2± 0.3
50000 94.1± 0.1 93.1± 0.1 94.8± 0.2 93.5± 0.2 84.1± 1.0 87.4± 0.5 82.5± 1.3 87.3± 0.5

CIFAR-100
2500 33.8± 1.0 34.6± 1.7 38.9± 0.6 39.4± 0.2 29.2± 0.2 30.4± 1.2 33.2± 1.1 35.0± 0.5
5000 45.2± 0.9 43.7± 0.7 49.9± 0.2 49.5± 0.4 37.0± 0.8 38.1± 1.1 39.4± 1.3 42.3± 0.7
25000 67.8± 0.2 66.6± 0.3 69.3± 0.3 68.2± 0.3 51.0± 1.9 56.5± 0.8 49.6± 1.0 55.8± 0.4
50000 74.4± 0.2 73.5± 0.3 75.2± 0.2 73.8± 0.3 51.9± 1.3 62.1± 0.5 50.0± 3.0 60.6± 0.7

B In most cases, the proposed methods (WDRO, WDRO+MIX) show
significantly better performance when test data are noisy.
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Numerical Experiments

Numerical Experiments: Accuracy comparison by noise
intensity

Table: The comparison of the accuracy reduction on various salt and pepper noise
intensities.

Probability of
ERM WDRO MIXUP WDRO+MIX

noisy pixels

CIFAR-10
1% 10.1± 0.9 5.7± 0.4 12.4± 1.2 6.2± 0.4
2% 21.1± 1.9 13.2± 0.5 24.3± 1.4 12.7± 0.8
4% 39.7± 2.9 32.9± 2.5 43.5± 1.8 30.9± 2.0

CIFAR-100
1% 22.5± 1.3 11.4± 0.4 25.2± 2.5 13.2± 0.7
2% 42.8± 2.3 26.5± 1.0 45.9± 3.4 29.7± 0.7
4% 61.7± 1.4 50.0± 0.9 63.9± 2.0 53.5± 0.9
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Numerical Experiments

Numerical Experiments: Gradient norm
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Figure: The box plots of the `∞-norm of the gradients when the number of
images used in training increases from 10× 216 to 100× 216.
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Numerical Experiments

Conclusion

We develop a principled and tractable statistical inference method
for WDRO.

We formally present a locally perturbed data distribution and develop
WDRO inference when data are locally perturbed.

For more details, ArXiv & Github links:
https://arxiv.org/abs/2006.03333

https://github.com/ykwon0407/wdro_local_perturbation
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